【大梳理】机器学习中10种损失函数大梳理!建议收藏

.

.

.

.

.

纯  干  货

.

.

.

.

.

.

.

.

目录

 

1、均方误差

2、平均绝对误差

3、交叉熵损失

4、对数损失

5、多类别交叉熵损失

6、二分类交叉熵损失

7、余弦相似度损失

 8、希尔伯特-施密特口袋

9、Huber损失

10、 感知器损失


.

.

.

.

.

.

.

.

.

 损失函数(Loss Function)是在机器学习和深度学习中用来衡量模型预测值与真实标签之间差异的函数。不同的任务和模型可能需要不同的损失函数。

今天就聊聊下面常见的损失函数,关于原理、使用场景,并且给出完整的代码:

  • 均方误差

  • 平均绝对误差

  • 交叉熵损失

  • 对数损失

  • 多类别交叉熵损失

  • 二分类交叉熵损失

  • 余弦相似度损失

  • 希尔伯特-施密特口袋

  • Huber损失

  • 感知器损失

ok,咱们一起来学习一下~

1、均方误差

均方误差是一种常用的损失函数,通常用于衡量回归模型预测结果与真实值之间的差异程度。

均方误差是通过计算预测值与真实值之间差异的平方和来衡量模型的性能。它对于较大的差异给予更高的权重,因为平方操作会放大较大的差异。均方误差的数值越小,表示模型预测的结果与真实值越接近。

均方误差的公式:

import numpy as np
import matplotlib.pyplot as plt

# 真实值和预测值
y_true = np.array([1, 2, 3, 4, 5])
y_pred = np.array([1.2, 2.5, 3.7, 4.1, 5.3])

# 计算均方误差
mse = np.mean((y_true - y_pred) ** 2)
print("MSE:", mse)

# 绘制真实值和预测值的散点图
plt.scatter(y_true, y_pred)
plt.plot([min(y_true), max(y_true)], [min(y_true), max(y_true)], 'k--', lw=2)  # 绘制直线y=x
plt.xlabel('True Values')
plt.ylabel('Predicted Values')
plt.title('Scatter plot of True vs Predicted Values')
plt.show()

运行这段代码将计算出均方误差,并绘制出一个散点图,其中x轴表示真实值,y轴表示预测值。通过与直线y=x进行比较,可以看到预测值与真实值之间的差异程度。较接近直线的点表示预测结果较准确。

2、平均绝对误差

平均绝对误差(Mean Absolute Error,MAE)是一种用于衡量预测模型性能的损失函数,通常用于回归问题。它衡量了模型的预测值与实际观测值之间的平均绝对差异。MAE 的值越小,表示模型的预测越准确。

MAE 的原理非常简单,它是所有绝对误差的平均值。绝对误差是指每个观测值的预测值与实际值之间的差的绝对值。

平均绝对误差的计算公式:


 

import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
n = 50
X = np.linspace(0, 10, n)
y_true = 2 * X + 1 + np.random.normal(0, 1, n)  # 真实的目标值,包含随机噪音
y_pred = 2 * X + 1.5  # 模拟的预测值

# 计算MAE
mae = np.mean(np.abs(y_true - y_pred))

# 绘制数据点和预测线
plt.scatter(X, y_true, label='Actual', color='b')
plt.plot(X, y_pred, label='Predicted', color='r')
plt.title(f'MAE = {mae:.2f}')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

代码中,首先生成了一些随机的数据点,然后计算了 MAE,并用散点图和预测线将数据可视化出来。MAE 的值会显示在图的标题中。

通过这个示例,你可以直观地了解 MAE 的计算和它如何衡量模型的性能。MAE 越小,预测值越接近实际值。

3、交叉熵损失

交叉熵损失(Cross-Entropy Loss)是机器学习中常用的一种损失函数,主要应用于分类问题。它用于衡量模型预测结果与实际标签之间的差异。

交叉熵损失基于信息论中的交叉熵概念,用于度量两个概率分布之间的相似性。在分类问题中,我们将实际标签表示为一个one-hot向量,即只有一个元素为1,其余元素为0;而模型的预测结果通常是一个概率分布。交叉熵损失通过计算实际标签和模型预测结果之间的交叉熵来评估模型的性能。

对于多分类问题,交叉熵损失可以表示为:

其中,为实际标签中第个类别的概率(one-hot编码),为模型预测的第个类别的概率。

一个Python案例

以下是一个多分类问题的例子,使用交叉熵损失进行模型训练:

import numpy as np
import matplotlib.pyplot as plt

def cross_entropy_loss(y_true, p_pred):
    epsilon = 1e-10  # 添加一个小的常数以避免log(0)计算错误
    return -np.sum(y_true * np.log(p_pred + epsilon), axis=1)

# 模拟数据
num_samples = 1000
num_classes = 5

np.random.seed(42)
y_true = np.eye(num_classes)[np.random.choice(num_classes, num_samples)]  # 生成随机的one-hot标签
p_pred = np.random.rand(num_samples, num_classes)  # 模型预测的概率

loss = cross_entropy_loss(y_true, p_pred)

# 计算平均损失
average_loss = np.mean(loss)

# 绘制损失函数图形
plt.plot(range(num_samples), loss, 'bo', markersize=2)
plt.xlabel('Sample')
plt.ylabel('Cross-Entropy Loss')
plt.title('Cross-Entropy Loss for each Sample')
plt.axhline(average_loss, color='r', linestyle='--', label='Average Loss')
plt.legend()
plt.show()

print(f'Average Loss: {average_loss}')

代码中,首先定义了一个cross_entropy_loss函数来计算交叉熵损失。然后,我们模拟了一个多分类问题的数据集,其中包含1000个样本和5个类别。接下来,使用该函数计算模型预测结果和实际标签之间的交叉熵损失,并计算平均损失。最后,使用Matplotlib库绘制了每个样本的交叉熵损失,并在图形中用一条红色虚线表示平均损失。

在实际应用中,通常会结合优化算法(如梯度下降)来最小化交叉熵损失,并优化模型的预测性能。

4、对数损失

对数损失(Log Loss),也称为二分类交叉熵损失,是机器学习中常用的一种损失函数之一,主要适用于二分类问题。它用于衡量模型预测结果与实际标签之间的差异。

对数损失基于信息论中的交叉熵概念,用于度量两个概率分布之间的相似性。在二分类问题中,通常使用0和1表示实际标签,而模型的预测结果是一个介于0和1之间的概率值。对数损失通过计算实际标签和模型预测结果的交叉熵来评估模型的性能。

对数损失可以表示为:

import numpy as np
import matplotlib.pyplot as plt

def log_loss(y_true, p_pred):
    epsilon = 1e-10  # 添加一个小的常数以避免log(0)计算错误
    return - (y_true * np.log(p_pred + epsilon) + (1 - y_true) * np.log(1 - p_pred + epsilon))

# 模拟数据
num_samples = 1000

np.random.seed(42)
y_true = np.random.randint(2, size=num_samples)  # 随机生成0和1的实际标签
p_pred = np.random.rand(num_samples)  # 模型预测的概率

loss = log_loss(y_true, p_pred)

# 计算平均损失
average_loss = np.mean(loss)

# 绘制损失函数图形
plt.plot(range(num_samples), loss, 'bo', markersize=2)
plt.xlabel('Sample')
plt.ylabel('Log Loss')
plt.title('Log Loss for each Sample')
plt.axhline(average_loss, color='r', linestyle='--', label='Average Loss')
plt.legend()
plt.show()

print(f'Average Loss: {average_loss}')

5、多类别交叉熵损失

多类别交叉熵损失是机器学习中常用的一种损失函数,用于衡量模型输出与真实标签之间的差异。它适用于多分类问题,其中每个样本有一个唯一的类别标签。

该损失函数通过计算模型预测的概率分布与真实标签的概率分布之间的交叉熵来度量它们之间的差异。交叉熵是一个非负的值,当且仅当预测的概率分布与真实标签完全匹配时为零。

假设我们有一个样本,其真实标签表示为一个one-hot向量(只有一个元素为1,其他元素为0)。假设模型的输出是一个概率分布向量,表示模型对每个类别的预测概率。则多类别交叉熵损失的公式如下:

其中, 是真实标签向量中第个元素的值(0或1), 是模型输出的概率分布向量中第个元素的值。

一个Python案例

下面是一个使用Python实现的多类别交叉熵损失的案例。

import numpy as np
import matplotlib.pyplot as plt

def categorical_cross_entropy(y_true, y_pred):
    # 避免出现概率为0的情况,加上一个小的偏移量
    epsilon = 1e-7
    # 计算交叉熵损失
    loss = -np.sum(y_true * np.log(y_pred + epsilon))
    return loss

# 生成随机的真实标签和预测概率分布
np.random.seed(42)
num_classes = 4
num_samples = 1000
y_true = np.random.randint(num_classes, size=num_samples)
y_pred = np.random.rand(num_samples, num_classes)

# 将真实标签转换为one-hot向量
y_true_one_hot = np.eye(num_classes)[y_true]

# 计算多类别交叉熵损失
loss = categorical_cross_entropy(y_true_one_hot, y_pred)
print("Loss:", loss)

# 绘制损失函数的图形
x = np.arange(0.01, 1.0, 0.01)
y = -np.log(x)
plt.plot(x, y)
plt.xlabel("Predicted Probability")
plt.ylabel("Loss")
plt.title("Categorical Cross-Entropy Loss")
plt.show()

在这个案例中,我们首先生成了随机的真实标签和预测概率分布。然后将真实标签转换为one-hot向量,以便与预测概率分布进行计算。

最后,使用categorical_cross_entropy函数计算多类别交叉熵损失,并输出结果。

同时,我们将绘制损失函数图形,其中横轴表示预测的概率,纵轴表示对应的损失值。

6、二分类交叉熵损失

二分类交叉熵损失是机器学习中常用的一种损失函数,适用于二分类问题,其中每个样本只有两个可能的类别。

该损失函数通过计算模型输出的概率与真实标签之间的交叉熵来衡量它们之间的差异。交叉熵是一个非负的值,当且仅当预测的概率与真实标签一致时为零。

假设我们有一个样本,其真实标签表示为0或1。假设模型的输出是一个[0, 1]范围内的概率,表示模型对类别1的预测概率。则二分类交叉熵损失的公式如下:


 

import numpy as np
import matplotlib.pyplot as plt

def binary_cross_entropy(y_true, y_pred):
    # 避免出现概率为0或1的情况,加上一个小的偏移量
    epsilon = 1e-7
    # 计算交叉熵损失
    loss = -y_true * np.log(y_pred + epsilon) - (1 - y_true) * np.log(1 - y_pred + epsilon)
    return loss

# 生成随机的真实标签和预测概率
np.random.seed(42)
num_samples = 1000
y_true = np.random.randint(2, size=num_samples)
y_pred = np.random.rand(num_samples)

# 计算二分类交叉熵损失
loss = binary_cross_entropy(y_true, y_pred)
print("Loss:", loss[:10])  # 打印前10个样本的损失值

# 绘制损失函数的图形
x = np.linspace(0.01, 0.99, 100)
y = -np.log(x) - np.log(1 - x)
plt.plot(x, y)
plt.xlabel("Predicted Probability")
plt.ylabel("Loss")
plt.title("Binary Cross-Entropy Loss")
plt.show()

在这个案例中,我们首先生成了随机的真实标签和预测概率。然后使用binary_cross_entropy函数计算二分类交叉熵损失,并输出结果。同时,我们将绘制损失函数图形,其中横轴表示预测的概率,纵轴表示对应的损失值。

7、余弦相似度损失

余弦相似度损失是一种常用的机器学习损失函数,用于衡量向量之间的相似性。它基于向量的内积和范数来计算相似度,并将其转化为一个损失值。

余弦相似度损失基于余弦相似度的概念。余弦相似度是两个向量之间的夹角的余弦值,范围在-1到1之间。当夹角为0度时,余弦相似度为1,表示两个向量完全相同;当夹角为90度时,余弦相似度为0,表示两个向量无关;当夹角为180度时,余弦相似度为-1,表示两个向量完全相反。

公式表达:假设有两个向量A和B,余弦相似度可以通过以下公式计算:

import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
x = np.linspace(-10, 10, 100)
y_true = np.sin(x) + np.random.normal(0, 0.1, size=(100,))

# 定义交叉熵损失函数
def cross_entropy_loss(y_true, y_pred):
    epsilon = 1e-7  # 避免log(0)的情况
    loss = -np.mean(y_true * np.log(y_pred + epsilon) + (1 - y_true) * np.log(1 - y_pred + epsilon))
    return loss

# 假设预测值为正弦函数
y_pred = np.sin(x)

# 计算交叉熵损失
loss = cross_entropy_loss(y_true, y_pred)

# 绘制图形
plt.plot(x, y_true, label='True')
plt.plot(x, y_pred, label='Predicted')
plt.title(f'Cross Entropy Loss: {loss:.4f}')
plt.legend()
plt.show()

上述代码生成了一个包含随机噪声的正弦函数作为真实值,并假设预测值也是正弦函数。通过交叉熵损失函数计算出损失值,并用图形表示出真实值和预测值。注意,这里的交叉熵损失函数假设了二分类问题,因此y_true和y_pred都是取值在0到1之间的概率值。

 8、希尔伯特-施密特口袋

希尔伯特-施密特口袋(Hinge-Schmidt Pocket)是一种用于支持向量机训练的损失函数。它是一种改进的希尔伯特-施密特损失函数,旨在更好地处理线性可分和线性不可分问题。

在解释希尔伯特-施密特口袋之前,我们先来了解一下标准的希尔伯特-施密特损失函数。

希尔伯特-施密特损失函数

希尔伯特-施密特损失函数是SVM中常用的损失函数之一,用于二分类问题的训练。其主要思想是要找到一个超平面,将两个类别的数据分开,并最大化这个超平面与最近的数据点(支持向量)之间的间隔。

损失函数的公式: 

下面我们将演示如何使用Python和Scikit-Learn来执行一个简单的二分类问题,使用交叉熵损失函数来训练一个逻辑回归模型,并绘制决策边界的图形。

首先,我们需要导入必要的库和生成一些模拟数据。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression

# 生成模拟数据
X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_classes=2, random_state=42)

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X, y)

# 用于绘制决策边界的辅助函数
def plot_decision_boundary(X, y, model):
    xx, yy = np.meshgrid(np.linspace(X[:, 0].min() - 1, X[:, 0].max() + 1, 100),
                         np.linspace(X[:, 1].min() - 1, X[:, 1].max() + 1, 100))
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, alpha=0.8)
    plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k')
    plt.xlabel('Feature 1')
    plt.ylabel('Feature 2')
    plt.show()

# 绘制决策边界
plot_decision_boundary(X, y, model)

这段代码生成了一个二维的模拟数据集,使用Scikit-Learn的逻辑回归模型进行训练,并绘制了决策边界的图形。决策边界将两个类别的数据分开。

交叉熵损失在逻辑回归模型中是默认的损失函数,它在模型训练过程中最小化损失来找到最佳的参数(权重和偏置)。

9、Huber损失

Huber损失是一种用于回归问题的损失函数,它对异常值不敏感,相比于均方误差(MSE),它对异常值的惩罚较小。Huber损失的主要思想是在距离真实值较近的情况下采用均方误差,而在距离较远的情况下采用绝对误差,这种权衡可以有效减少异常值的影响。

Huber损失的公式:

import numpy as np
import matplotlib.pyplot as plt

# 定义Huber损失函数
def huber_loss(y_true, y_pred, delta):
    error = np.abs(y_true - y_pred)
    if error <= delta:
        return 0.5 * error**2
    else:
        return delta * error - 0.5 * delta**2

# 生成一些样本数据
np.random.seed(0)
X = np.linspace(0, 10, 100)
y_true = 2 * X + 1 + np.random.normal(0, 1, 100)

# 定义模型预测值
y_pred = 2 * X + 1

# 计算不同delta值下的损失
deltas = [1.0, 2.0, 5.0]
losses = []

for delta in deltas:
    loss = [huber_loss(y_true[i], y_pred[i], delta) for i in range(len(X))]
    losses.append(loss)

# 绘制损失曲线
plt.figure(figsize=(10, 6))
for i, delta in enumerate(deltas):
    plt.plot(X, losses[i], label=f'Huber Loss (delta={delta})')

plt.xlabel('X')
plt.ylabel('Loss')
plt.title('Huber Loss for Different Delta Values')
plt.legend()
plt.grid(True)
plt.show()

代码中,首先定义了Huber损失函数,然后生成了一些样本数据,包括真实的目标值和模型的预测值。接下来,我们计算了不同delta值下的损失,并绘制了损失曲线。从图中可以清晰地看出,随着delta值的增大,Huber损失在异常值处的惩罚逐渐减小,这是Huber损失相对于均方误差的一个重要特点。

以上示例说明了Huber损失如何在不同情况下平衡均方误差和绝对误差,以减少异常值对损失的影响。

10、 感知器损失

感知器损失函数,也称为0-1损失函数,是一种用于二元分类任务的损失函数。

它的原理非常简单:它将分类问题的输出与真实标签进行比较,如果预测正确则损失为0,否则损失为1。

感知器损失函数的公式:

import numpy as np
import matplotlib.pyplot as plt

# Generate random binary classification dataset
np.random.seed(0)
X = np.random.rand(100, 2)  # 100 samples with 2 features each
y = (X[:, 0] + X[:, 1] > 1).astype(int)  # Labels: 1 if sum of features > 1, else 0

# Assume our model always predicts 1 for demonstration
y_pred = np.ones_like(y)

# Calculate perceptron loss
loss = np.mean(np.abs(y - y_pred))

# Print the loss value
print(f"Perceptron Loss: {loss}")

# Plot data points and decision boundary
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Binary Classification Dataset and Decision Boundary")

# Plot the decision boundary (a simple straight line here)
x_line = np.linspace(0, 1.2, 100)
y_line = 1 - x_line
plt.plot(x_line, y_line, 'k--', label="Decision Boundary")
plt.legend()
plt.show()

当然,在特定的场景和条件下,很大情况下需要自定义损失函数~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.Boss.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值