线性回归 10 种图表 上

这段时间,不少同学提到了一些图表的问题。

每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?

其实这个根据你自己的需求,自己的想法来就行。

今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~

至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!

那么,在线性回归学习中,以下10种图表是很重要的:

  • 散点图

  • 线性趋势线图

  • 残差图(Residual plot)

  • 正态概率图

  • 学习曲线

  • 方差-偏差权衡图

  • 残差对预测值图

  • 部分回归图

  • 杠杆图

  • Cook's 距离图  

1,散点图

散点图(Scatter plot)是一种展示两个变量之间关系的图表。它通过在坐标系中以点的形式表示数据,其中每个点的位置由两个变量的值决定,从而展示它们之间的关系。

在线性回归中,散点图通常用于可视化数据集中两个变量之间的关系,并帮助我们判断是否适合使用线性模型进行建模。

咱们使用sklearn库中的load_diabetes数据集。然后,将选择数据集中的一个特征作为自变量X,另一个特征作为因变量y。后面的案例,也用这个数据集给大家进行演示。

from sklearn.datasets import load_diabetes

# 加载数据集
diabetes = load_diabetes()
X = diabetes.data[:, 2]  # 使用第三个特征作为自变量
y = diabetes.target

# 手动实现简单线性回归算法
def simple_linear_regression(X, y):
    # 计算均值
    X_mean = sum(X) / len(X)
    y_mean = sum(y) / len(y)
    
    # 计算斜率和截距
    numerator = sum((X - X_mean) * (y - y_mean))
    denominator = sum((X - X_mean) ** 2)
    slope = numerator / denominator
    intercept = y_mean - slope * X_mean
    
    return slope, intercept

# 获取回归直线的斜率和截距
slope, intercept = simple_linear_regression(X, y)

现在,画出散点图并添加回归直线。

import matplotlib.pyplot as p
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.Boss.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值