题目描述
给定一个长度为
n
的整数数组height
。有n
条垂线,第i
条线的两个端点是(i, 0)
和(i, height[i])
。找出其中的两条线,使得它们与
x
轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7] 输出:49 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。示例 2:输入:height = [1,1] 输出:1
提示:
n == height.length
2 <= n <=
0 <= height[i] <=
解题思路
这个问题可以通过使用双指针的方式来解决。因为我们想要找到两个垂线,使得它们能形成的容器容纳最多的水,所以可以通过以下步骤实现:
- 初始化双指针:一个指针
left
指向数组的起始位置,另一个指针right
指向数组的末尾位置。 - 计算容积:在每一步中,计算由
left
和right
指针指向的垂线所形成的容器的容积,公式为min(height[left], height[right]) * (right - left)
。 - 移动指针:为了找到更大的容积,比较
height[left]
和height[right]
,将较小的那个指针向中间移动一位(如果左侧较小,则左指针右移,否则右指针左移)。 - 更新最大值:在每次计算中,记录最大容积的值。
- 终止条件:当两个指针相遇时,遍历结束,最大容积即为结果。
复杂度分析
-
时间复杂度:O(n)。在双指针法中,每一步只移动一个指针,一共需要遍历整个数组一次,因此时间复杂度为 O(n)。
-
空间复杂度:O(1)。只使用了固定的额外空间来存储指针和最大面积,因此空间复杂度为 O(1)。
代码实现
package org.zyf.javabasic.letcode.hot100.twopoint;
/**
* @program: zyfboot-javabasic
* @description: 盛最多水的容器
* @author: zhangyanfeng
* @create: 2024-08-21 20:54
**/
public class MaxAreaSolution {
public int maxArea(int[] height) {
int left = 0, right = height.length - 1;
int maxArea = 0;
// 使用双指针法计算最大面积
while (left < right) {
// 计算当前指针指向的垂线形成的容器的面积
int currentArea = Math.min(height[left], height[right]) * (right - left);
// 更新最大面积
maxArea = Math.max(maxArea, currentArea);
// 移动较小的一端的指针
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return maxArea;
}
public static void main(String[] args) {
MaxAreaSolution solution = new MaxAreaSolution();
int[] height1 = {1,8,6,2,5,4,8,3,7};
System.out.println(solution.maxArea(height1)); // 输出: 49
int[] height2 = {1,1};
System.out.println(solution.maxArea(height2)); // 输出: 1
}
}
具体可参考:https://zyfcodes.blog.csdn.net/article/details/141401712