第5周实验--线性/非线性规划问题求解

本文介绍了使用Excel和Python编程解决线性规划问题的步骤,包括Excel中的规划求解加载项应用,以及Python实现的详细过程。此外,还探讨了拉格朗日方法的手动和编程求解,强调了编程求解的效率优势。
摘要由CSDN通过智能技术生成

1.用Excel和python编程完成线性规划问题的求解

点开EXCEL,将WORD中数据转移到EXCEL中去
在这里插入图片描述
给出了约束条件与数值命名.
在这里插入图片描述
在这里插入图片描述

设定目标函数与约束条件
在这里插入图片描述
选择“文件”→“选项”→“加载项"→“转到”,勾选“规划求解加载项”,点击“确定"按钮。
在这里插入图片描述
再次进入可发现能够使用规划求解,设置目标及可变单元格
在这里插入图片描述
将所有约束给添加上去,点击求解
在这里插入图片描述
获得答案
在这里插入图片描述

2.用python完成线性规划问题的求解

在这里插入图片描述
设置约束条件

# 导入包
from scipy import optimize
import numpy as np
#创建矩阵,c为目标函数的矩阵,A_ub为约束条件的左边构成的矩阵,B_ub为约束条件的右边
c=np.array
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值