1. 常数
( C ) ′ = 0 , C 为 常 数 \LARGE(C)'=0,\ C为常数 (C)′=0, C为常数
2. 指数函数
(
n
x
)
′
=
n
x
ln
n
\LARGE(n^x)'=n^x\ln n
(nx)′=nxlnn
(
e
x
)
′
=
e
x
\LARGE(e^x)'=e^x
(ex)′=ex
3. 对数函数
(
log
a
x
)
′
=
1
x
ln
a
\LARGE(\log_ax)'=\frac1{x\ln a}
(logax)′=xlna1
(
ln
x
)
′
=
1
x
\LARGE(\ln x)'=\frac1x
(lnx)′=x1
4. 幂函数
( x n ) ′ = n x n − 1 , n 为 任 意 实 数 \LARGE(x^n)'=nx^{n-1},\ n为任意实数 (xn)′=nxn−1, n为任意实数
5. 三角函数
(
sin
x
)
′
=
cos
x
\LARGE(\sin x)'=\cos x
(sinx)′=cosx
(
cos
x
)
′
=
−
sin
x
\LARGE(\cos x)'=-\sin x
(cosx)′=−sinx
(
tan
x
)
′
=
sec
2
x
\LARGE(\tan x)^{\prime}=\sec ^{2} x
(tanx)′=sec2x
(
cot
x
)
′
=
−
csc
2
x
\LARGE(\cot x)^{\prime}=-\csc ^{2} x
(cotx)′=−csc2x
(
sec
x
)
′
=
sec
x
tan
x
\LARGE(\sec x)^{\prime}=\sec x \tan x
(secx)′=secxtanx
(
csc
x
)
′
=
−
csc
x
cot
x
\LARGE(\csc x)^{\prime}=-\csc x \cot x
(cscx)′=−cscxcotx
6. 反三角函数
(
arcsin
x
)
′
=
1
1
−
x
2
\LARGE (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
(arcsinx)′=1−x21
(
arccos
x
)
′
=
−
1
1
−
x
2
\LARGE (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}
(arccosx)′=−1−x21
(
arctan
x
)
′
=
1
1
+
x
2
\LARGE (\arctan x)^{\prime}=\frac{1}{1+x^{2}}
(arctanx)′=1+x21
(
arccot
x
)
′
=
−
1
1
+
x
2
\LARGE (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}}
(arccotx)′=−1+x21