【梳理】离散数学 第6章 集合代数 6.3 有穷集的计数 6.4 集合恒等式

本文详细介绍了离散数学中关于有穷集计数的原理,包括容斥定理及其在欧拉函数中的应用,以及错位排列数的概念。同时,阐述了集合恒等式的基本定律和证明方法,如集合运算的主要定律和特定恒等式的证明,展示了如何利用命题逻辑等值式进行证明。
摘要由CSDN通过智能技术生成

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

6.3 有穷集的计数

1、容斥定理(容斥原理) 设有穷集S,n个性质分别为P1,P2,……,Pn。S中的元素具有或不具有性质Pi。
若Ai表示S中具有性质Pi的元素构成的子集,则同时不具有全部性质P1,P2,……,Pn的元素数为

S中至少具有某种性质的元素数为

用数学归纳法可以完成证明。

2、欧拉(Euler)函数是数论中的一个重要函数,记为φ(n),表示{0, 1, …, n-1}中与n互质的数的个数。
下面利用容斥定理给出其计算公式。
设n的质因数分解式为,令Ai = {x | 0 ≤ x < n-1,pi % x = 0},即把与n的公因数不只有1(至少有公因数pi)的数x全部找出来。这里不取n-1,是因为相邻的两个正整数一定是互质数。利用反证法证明如下:
设正整数n-1与n不互质,那么一定存在大于1的公因数d&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值