教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后
6.3 有穷集的计数
1、容斥定理(容斥原理) 设有穷集S,n个性质分别为P1,P2,……,Pn。S中的元素具有或不具有性质Pi。
若Ai表示S中具有性质Pi的元素构成的子集,则同时不具有全部性质P1,P2,……,Pn的元素数为
S中至少具有某种性质的元素数为
用数学归纳法可以完成证明。
2、欧拉(Euler)函数是数论中的一个重要函数,记为φ(n),表示{0, 1, …, n-1}中与n互质的数的个数。
下面利用容斥定理给出其计算公式。
设n的质因数分解式为,令Ai = {x | 0 ≤ x < n-1,pi % x = 0},即把与n的公因数不只有1(至少有公因数pi)的数x全部找出来。这里不取n-1,是因为相邻的两个正整数一定是互质数。利用反证法证明如下:
设正整数n-1与n不互质,那么一定存在大于1的公因数d&#