历届试题 大臣的旅费
时间限制:1.0s 内存限制:256.0MB
问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式
大臣J从城市4到城市5要花费135的路费
ps: 不重复经过大城市,求任意两点之间边权的最大总和,很明显要使用DFS。一开始枚举各个起点做深搜,但提交的结果显示最后一个评测点超时了,所以还需要优化。如果一开始就能知道最长边权值和的路径的起点或终点就好了,这样再做一次深搜就可以了。查阅资料,有以下的结论:
- 设s-t为最长路径,从任意一点u出发搜到的最远的点一定是s、t中的一点,然后在从这个最远点开始搜,就可以搜到另一个最长路的端点,即用两遍搜索(DFS或BFS)就可以找出树的最长路。
证明请参考:树的直径(最长路) 的详细证明
第一次code:
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int MAXV = 1000;
int maxt;
struct Node
{
int v;
int w;
Node(int _v, int _w):v(_v),w(_w){}
};
bool visited[MAXV] = {false};
vector<Node>Adj[MAXV];
void DFS(int u, int mon)//u为当前访问的顶点标号,depth为深度
{
visited[u] = true;
if(maxt < mon)maxt = mon;
for(int i = 0; i < Adj[u].size(); i++)
{//对从u出发可以到达的所有顶点v
int v = Adj[u][i].v;
if(visited[v] == false)
{
DFS(v,mon+Adj[u][i].w);
}
}
}
void DFSTrave(int n)
{//遍历图G
for(int u = 1; u <= n; u++)
{
int mon = 0;
memset(visited, 0, sizeof visited);
if(visited[u] == false)
{
DFS(u,mon);
}
}
}
int main()
{
ios::sync_with_stdio(false);
int n;
while(cin>>n)
{
memset(visited, 0, sizeof visited);
for(int i = 1; i <= n; i++)
Adj[i].clear();
int b, e, w;
maxt = 0;
for(int i = 0; i < n - 1; i++)
{
cin>>b>>e>>w;
Adj[b].push_back(Node(e,w));
Adj[e].push_back(Node(b,w));
}
DFSTrave(n);
int ans = (maxt + 10 + 11) * maxt / 2;
cout<<ans<<endl;
}
return 0;
}
最终code:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
const int MAXV = 10005;
int maxt;
struct Node
{
int v;
int w;
Node(int _v, int _w):v(_v),w(_w){}
};
bool visited[MAXV] = {false};
vector<Node>Adj[MAXV];
int endt;
void DFS(int u, int mon)//u为当前访问的顶点标号,depth为深度
{
visited[u] = true;
if(maxt < mon){
endt = u;
maxt = mon;
}
for(int i = 0; i < Adj[u].size(); i++)
{//对从u出发可以到达的所有顶点v
int v = Adj[u][i].v;
if(visited[v] == false)
{
DFS(v,mon+Adj[u][i].w);
}
}
}
void DFSTrave(int n)
{//遍历图G
for(int u = 1; u <= n; u++)
{
int mon = 0;
if(visited[u] == false)
{
DFS(u,mon);
}
}
memset(visited, 0, sizeof visited);
DFS(endt, 0);
}
int main()
{
//ios::sync_with_stdio(false);
int n;
while(~scanf("%d",&n))
{
memset(visited, 0, sizeof visited);
for(int i = 1; i <= n; i++)
Adj[i].clear();
int b, e, w;
maxt = 0;
for(int i = 0; i < n - 1; i++)
{
scanf("%d%d%d",&b,&e,&w);
Adj[b].push_back(Node(e,w));
Adj[e].push_back(Node(b,w));
}
DFSTrave(n);
int ans = (maxt + 10 + 11) * maxt / 2;
printf("%d\n",ans);
}
return 0;
}
其实在最终通过全部评测点的过程还发生一个错误,我的数组开太小了,只有1000,但是评测结果不给RE,而是TLE, 有点坑呢(╰(`□′)╯ ),最后直接开10005过了。