完全背包问题

完全背包问题
状态表示: f [ i ] [ j ] f[i][j] f[i][j]: 从前 i i i 个物品中选,总体积不超过j的集合
状态属性: 总价值的最大值
状态计算:
i i i 个物品选 0 0 0 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − 0 ∗ v [ i ] ] ) ; f[i][j] = max(f[i][j], f[i - 1][j - 0 * v[i]]); f[i][j]=max(f[i][j],f[i1][j0v[i]]);
第i个物品选 1 1 1 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − 1 ∗ v [ i ] ] + w [ i ] ) ; f[i][j] = max(f[i][j], f[i - 1][j - 1 * v[i]] + w[i]); f[i][j]=max(f[i][j],f[i1][j1v[i]]+w[i]);
i i i 个物品选 2 2 2 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − 2 ∗ v [ i ] ] + 2 ∗ w [ i ] ] ) ; f[i][j] = max(f[i][j], f[i - 1][j - 2 * v[i]] + 2 * w[i]]); f[i][j]=max(f[i][j],f[i1][j2v[i]]+2w[i]]);
i i i 个物品选 3 3 3 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − 3 ∗ v [ i ] ] + 3 ∗ w [ i ] ] ) ; f[i][j] = max(f[i][j], f[i - 1][j - 3 * v[i]] + 3 * w[i]]); f[i][j]=max(f[i][j],f[i1][j3v[i]]+3w[i]]);

i i i 个物品选 k k k f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − k ∗ v [ i ] ] + k ∗ w [ i ] ) ; f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]); f[i][j]=max(f[i][j],f[i1][jkv[i]]+kw[i]);
1.朴素做法 时间复杂度 O( n 3 n^3 n3)

 for(int i = 1; i <= n; i ++ ) 
 for(int j = 0; j <= m; j ++ )
 for(int k = 0; k * v[i] <= j; k ++ )
 f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);

2.时间优化 时间复杂度 O( n 2 n^2 n2)
在这里插入图片描述
观察可以推出 f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − v ] + w ) ; f[i][j] = max(f[i - 1][j], f[i][j - v] + w); f[i][j]=max(f[i1][j],f[i][jv]+w);

for(int i = 1 ; i <= n ; i ++)
     for(int j = 0 ; j <= m ; j ++)
     {
        f[i][j] = f[i - 1][j];
        if(j >= v[i])        
        f[i][j] = max(f[i][j],f[i][j - v[i]] + w[i]);
      }

3.空间优化
当我们进行时间优化后,我们可以对比这两个这两个式子
01 01 01 背包 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] ) ; f[i][j] = max(f[i][j],f[i - 1][j - v[i]] + w[i]); f[i][j]=max(f[i][j],f[i1][jv[i]]+w[i]);
完全背包 f [ i ] [ j ] = m a x ( f [ i ] [ j ] , f [ i ] [ j − v [ i ] ] + w [ i ] ) ; f[i][j] = max(f[i][j],f[i][j - v[i]] + w[i]); f[i][j]=max(f[i][j],f[i][jv[i]]+w[i]);

我们会发现他们唯一的区别就是用到的状态不同, 01 01 01 背包用到的是第 i − 1 i-1 i1 层状态,而完全背包用到的是第 i i i 层状态, 我们能够对 01 01 01 背包进行空间优化, 那我们肯定会想,能不能也对完全背包进行空间优化呢? 答案是显然的, 那么问题来了,我们应该从小到大枚举还是从大到小枚举呢? 答案是从小到大枚举, 因为如果我们从大到小枚举,此时遍历到的状态是 j j j,右边的状态已经被更新,被更新为第 i i i 层,左边还未计算的是第 i − 1 i-1 i1 层,此时要更新状态 j j j,要用到左边第i层的状态,但是此时左边的状态都为第 i − 1 i-1 i1 层,与状态转移方程不符.

for(int i = 1; i <= n ;i++)
for(int j = v[i]; j <= m;j++)
     f[j] = max(f[j],f[j-v[i]]+w[i]);
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广西小蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值