Codeforces Round #746 (Div. 2)(A~C)

C. Bakry and Partitioning

题意: 巴克里面临着一个问题,但由于他懒于解决它,他向你寻求帮助。
给定一棵有 n n n 个节点的树,第 i i i 个节点的值为 a i a_i ai,从 1 1 1 n n n 。提醒一下, n n n 个节点上的树是一个有 n − 1 n−1 n1 条边的连通图。
至少要删除 1 1 1 个,但最多是 k − 1 k - 1 k1 个,对于每个连接的组件,计算其中节点值的按位异或。然后,对于所有连接的组件,这些值必须相同。有可能达到这个条件吗?

首先可以考虑一下总的异或和, 记为 s u m sum sum, 如果 s u m sum sum 0 0 0, 任意删掉一条边即可
如果 s u m sum sum 不为 0 0 0, 假设 k k k = 2, s u m 1 = s u m 2 sum1 = sum2 sum1=sum2, s u m = s u m 1 ∗ s u m 2 = 0 sum = sum1 * sum2 = 0 sum=sum1sum2=0, 显然不成立, 所以 k ≥ 3 k ≥ 3 k3, 又知道 s u m sum sum ^ s u m sum sum ^ s u m = s u m sum = sum sum=sum, 我们可以通过深搜寻找异或和为 s u m sum sum

#include<bits/stdc++.h>
#define x first
#define y seoncd
#define int long long 
#define gg exit(0);
#define sf1(x) scanf("%lld",&x)
#define sf2(x,y) scanf("%lld%lld",&x,&y)
#define pr1(x) printf("%lld\n", x)
#define pr2(x, y) printf("%lld%lld\n", x, y)
#define debug printf("debug\n");
const int N = 1e5 + 10;
using namespace std;
typedef pair<int, int>PII;
int w[N], ne[N], h[N], e[N], sum, idx, ans, t;
void add(int a, int b)
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

int  dfs(int u, int fa)
{
	int t = w[u];  //以点u为起点
	for(int i = h[u]; ~i; i = ne[i])
	{
		int j = e[i];
		if(j == fa) continue; 
		t ^= dfs(j, u);  //汇总
	}
	if(t == sum) t = 0, ans ++;  //可以作为一个连通块
	return t;
}
void solve()
{
	int n, k;
	cin >> n >> k;
	idx = 0;
	ans = 0;
	sum = 0;
	memset(h, -1, sizeof h);
	for(int i = 1; i <= n; i ++ ) cin >> w[i], sum ^= w[i];
	for(int i = 1; i <= n - 1; i ++ )  //建图
	{
		int a, b;
		cin >> a >> b;
		add(a, b), add(b, a);
	}
	if(sum == 0)  //特判
	{
			cout << "YES\n";
			return;
	}
	if(k == 2)  //特判
	{
	 cout << "NO\n";
	 return;
	}
		dfs(1, -1);  //搜
		if(ans >= 2) cout << "YES\n";
		else cout << "NO\n";

}
signed main()
{
	//t = 1;
	 scanf("%lld", &t);
	while(t -- )
	solve();
}

B. Hemose Shopping

题意: H e m o s e Hemose Hemose 有一个 n n n 个整数的数组。他希望 S a m e z Samez Samez 按照非递减顺序对数组进行排序。由于这对 S a m e z Samez Samez 来说是一个太简单的问题,所以 H e m o s e Hemose Hemose 允许 S a m e z Samez Samez 只使用以下操作:选择索引 i i i j j j,使 1 ≤ i , j ≤ n , ∣ i − j ∣ ≥ x 1≤i,j≤n, |i−j|≥x 1i,jnijx。然后,交换元素 a i a_i ai a j a_j aj
您能否告诉 S a m e z Samez Samez 是否有一种方法,通过使用上面所写的某个有限次数(可能是 0 0 0 )的操作,以非递减顺序对数组进行排序?

首先在数组中有些地方的元素是不能移动的, 所以这些地方的元素必须保证有序,即对该数组排序后, 位置没变, 当 n ≥ 2 × x n ≥ 2 × x n2×x, 任何位置的元素都可以移动, 则一定有解, 如果小于, 则判断不能移动的位置( n − x + 1 n - x + 1 nx+1 ~ x x x ) 是否有序

#include<bits/stdc++.h>
#define x first
#define y second
#define int long long 
#define gg exit(0);
#define sf1(x) scanf("%lld",&x)
#define sf2(x,y) scanf("%lld%lld",&x,&y)
#define pr1(x) printf("%lld\n", x)
#define pr2(x, y) printf("%lld%lld\n", x, y)
#define debug printf("debug\n");
const int N = 3e5 + 10;
using namespace std;
typedef pair<int, int>PII;
int t, n, a[N], b[N];
void solve()
{

	int n, k, x;
	cin >> n >> k;
	for(int i = 1; i <= n; i ++ ) cin >> a[i], b[i] = a[i];  //拷贝一份

	if(n >= 2 * k) cout << "YES\n"; //全都可以移动, 一定有解
	else 
	{
		sort(b + 1, b + 1 + n );  //排序
		for(int i =  n - k + 1; i <= k; i ++ )
			if(b[i] != a[i])  //是否有序
			{
				cout << "NO\n";  
				return;
			}
		cout << "YES\n";
	}

}
signed main()
{
	//t = 1;
	 scanf("%lld", &t);
	while(t -- )
	solve();
}

A. Gamer Hemose

题意: 有一个特工,他有 n n n 件武器。第 i i i个武器的伤害值为 a i a_i ai,代理将面对生命值为 H H H 的敌人。特工将执行一个或多个动作,直到敌人死亡。
在一次行动中,他将选择一种武器并通过伤害值降低敌人的生命值。当敌人的生命值小于等于 0 0 0 时,敌人就会死亡。然而,并非所有事情都如此简单:Agent不能连续 2 2 2 次选择相同的武器。 特工需要使用武器杀死敌人的最少次数是多少?

#include<bits/stdc++.h>
#define x first
#define y seoncd
#define int long long 
#define gg exit(0);
#define sf1(x) scanf("%lld",&x)
#define sf2(x,y) scanf("%lld%lld",&x,&y)
#define pr1(x) printf("%lld\n", x)
#define pr2(x, y) printf("%lld%lld\n", x, y)
#define debug printf("debug\n");
const int N = 3e5 + 10;
using namespace std;
typedef pair<int, int>PII;
int t, n, a[N];
void solve()
{
	int H;  //血量
	cin >> n >> H;  
	for(int i = 1; i <= n; i ++) cin >> a[i];  
	sort(a + 1, a + 1 + n);  //排序
	//计算出次数, 最后剩下的血量
	int ans = (H / (a[n] + a[n-1])) * 2, r = H % (a[n] + a[n-1]);
	if (r > a[n]) ans += 2; 
	if (r <= a[n] && r > 0) ans++;
	cout << ans << endl; 

}
signed main()
{
	//t = 1;
	 scanf("%lld", &t);
	while(t -- )
	solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广西小蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值