<think>我们正在处理如何将集成自定义算子后的Qwen2.5模型转换为昇腾OM格式进行部署。这个过程需要经过几个关键步骤,包括模型导出为ONNX、自定义算子的注册、模型转换等。以下是详细步骤:
### 一、导出模型为ONNX格式
1. **修改模型代码以支持ONNX导出**
在调用自定义算子的模块中,需要为PyTorch的`torch.onnx.export`函数提供符号函数(symbolic function)以描述自定义算子的行为。
```python
import torch
import torch.onnx.symbolic_helper as sym_help
# 定义自定义算子的符号函数
def custom_forward_symbolic(g, input):
# 这里需要定义在ONNX图中如何表示该算子
# 如果自定义算子可以分解为ONNX已有算子,则在此组合
# 否则,需要导出为自定义算子节点(此时需要提供算子定义文件)
output = g.op("CustomOp", input,
domain_s="custom_domain", # 自定义域名
attribute1_i=1) # 可选属性
return output
# 注册符号函数
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic('custom_ops::forward', custom_forward_symbolic, 11) # 11为ONNX版本号
```
2. **导出ONNX模型**
使用标准的PyTorch ONNX导出流程,但需确保模型在NPU设备上运行并导出:
```python
model = Qwen2ForCausalLM.from_pretrained("Qwen/Qwen2.5-3B").to("npu")
model.eval()
# 示例输入
input_ids = torch.tensor([[1, 2, 3, 4, 5]]).npu()
attention_mask = torch.tensor([[1, 1, 1, 1, 1]]).npu()
# 导出ONNX模型
torch.onnx.export(
model,
(input_ids, attention_mask),
"qwen2.5-3b-custom.onnx",
opset_version=11, # 根据自定义算子需求选择版本
input_names=['input_ids', 'attention_mask'],
output_names=['logits'],
dynamic_axes={
'input_ids': {0: 'batch_size', 1: 'sequence_length'},
'attention_mask': {0: 'batch_size', 1: 'sequence_length'},
'logits': {0: 'batch_size', 1: 'sequence_length'}
}
)
```
### 二、准备自定义算子的定义文件
1. **创建算子定义文件(.json)**
由于自定义算子不在ONNX标准算子集中,需要提供算子定义文件,供后续转换工具识别。
```json
[
{
"op": "CustomOp", // 算子名称,与符号函数中一致
"input_desc": [
{
"name": "input",
"type": "float16",
"format": "ND"
}
],
"output_desc": [
{
"name": "output",
"type": "float16",
"format": "ND"
}
],
"attr": [
{
"name": "attribute1",
"type": "int",
"default_value": 1
}
]
}
]
```
2. **将定义文件放入昇腾自定义算子目录**
设置环境变量指向该文件:
```bash
export ASCEND_OPP_PATH=/path/to/custom_op_dir # 包含custom_op.json的目录
```
### 三、使用昇腾模型转换工具(OMG)转换模型
1. **安装昇腾模型转换工具**
确保已安装昇腾AI处理器配套的模型转换工具(OMG),通常包含在CANN Toolkit中。
2. **执行模型转换命令**
```bash
atc --model=qwen2.5-3b-custom.onnx \
--framework=5 \
--output=qwen2.5-3b-custom \
--soc_version=Ascend310 \ # 根据实际芯片版本修改
--log=info \
--op_select_implmode=high_performance \
--input_format=ND \
--input_shape="input_ids:1,5;attention_mask:1,5" # 示例输入形状,实际需根据模型调整
```
### 四、验证转换后的模型
1. **使用昇腾推理接口加载OM模型**
通过昇腾提供的推理引擎(如ACL)加载OM模型进行推理:
```python
import acl
from ais_bench.infer.interface import InferSession
# 创建推理会话
device_id = 0
session = InferSession(device_id, "qwen2.5-3b-custom.om")
# 准备输入数据(需转换为NPU设备内存)
inputs = [np_array1, np_array2] # 根据模型输入结构准备数据
outputs = session.infer(inputs)
# 处理输出结果
print(outputs)
```
### 关键注意事项
1. **算子兼容性**
- 若自定义算子无法映射到ONNX标准算子,需确保昇腾AI处理器支持该自定义算子[^1]。
- 在转换过程中,OMG会检查算子是否在昇腾AI处理器的支持列表中。
2. **动态形状支持**
- 若模型需要支持动态形状,在`atc`命令中通过`--dynamic_batch_size`或`--dynamic_image_size`等参数指定动态维度范围:
```bash
--input_shape="input_ids:1,-1;attention_mask:1,-1" \
--dynamic_batch_size="1,4,8" # 支持batch_size=1,4,8
```
3. **精度校验**
- 转换后务必进行精度校验,确保OM模型与原始PyTorch模型输出一致。
4. **性能优化**
- 使用`atc`的优化参数(如`--fusion_switch_file`)启用融合优化策略
- 通过`msprof`工具进行性能分析,调整算子实现
§§相关问题§§
1. 昇腾OM模型转换过程中遇到自定义算子不支持的错误如何解决?
2. 如何为昇腾OM模型编写高性能的推理程序?
3. 昇腾平台上的动态形状支持有哪些限制?</think>要将集成自定义算子的 Qwen2.5-3B 模型转换为昇腾 OM 格式进行部署,需要经过以下关键步骤:
### 一、模型转换流程
1. **导出ONNX模型**
在PyTorch中注册自定义算子的符号函数后导出:
```python
from torch.onnx import register_custom_op_symbolic
# 注册自定义算子的ONNX符号函数
def custom_op_symbolic(g, input):
return g.op("CustomDomain::CustomOp", input,
attribute1_f=1.0, # 示例属性
domain_s="custom_domain")
register_custom_op_symbolic("custom_ops::forward", custom_op_symbolic, 11)
# 导出ONNX模型
torch.onnx.export(model,
(input_ids, attention_mask),
"qwen2.5-custom.onnx",
opset_version=11,
input_names=["input_ids", "attention_mask"],
output_names=["logits"],
dynamic_axes={"input_ids": {0: "batch", 1: "seq_len"}})
```
2. **准备自定义算子定义文件**
创建JSON描述文件 `custom_op.json`:
```json
[
{
"op": "CustomOp", // 与ONNX符号函数中命名一致
"compute_cost": 10,
"flag_partial": true,
"input_desc": [
{"name": "x", "type": "float16", "format": "ND"}
],
"output_desc": [
{"name": "y", "type": "float16", "format": "ND"}
]
}
]
```
### 二、使用ATC工具转换
```bash
atc --model=qwen2.5-custom.onnx \
--framework=5 \ # ONNX框架
--output=qwen2.5-custom \ # 输出OM文件名
--soc_version=Ascend310P3 \ # 根据实际芯片调整
--log=info \
--op_select_implmode=high_performance \
--input_format=ND \
--input_shape="input_ids:1,1024;attention_mask:1,1024" \
--optypelist_for_implmode="CustomOp" \ # 关键:指定自定义算子
--op_name_map=./custom_op.json # 自定义算子描述文件
```
### 三、关键配置说明
1. **动态形状支持**
在ATC命令中添加动态维度参数:
```bash
--dynamic_batch_size="1,2,4,8" \ # 支持不同batch_size
--dynamic_seq_len="256,512,1024" # 支持不同序列长度
```
2. **自定义算子实现**
确保已编译好的算子库(`.so`文件)位于环境变量路径:
```bash
export ASCEND_OPP_PATH=/path/to/custom_op_dir # 包含custom_op.json的目录
export LD_LIBRARY_PATH=/path/to/custom_op.so:$LD_LIBRARY_PATH
```
### 四、验证与部署
1. **模型验证**
使用AscendCL接口验证OM模型:
```python
from ais_bench.infer.interface import InferSession
device_id = 0
session = InferSession(device_id, "qwen2.5-custom.om")
outputs = session.infer([input_data])[0] # 获取输出
```
2. **性能优化**
使用`msprof`工具分析性能瓶颈:
```bash
msprof --application="python infer.py" \
--output=profiling_data \
--aic-metrics=true
```
### 常见问题解决方案
| 错误类型 | 解决方案 |
|---------|---------|
| `Unsupported op: CustomOp` | 检查`ASCEND_OPP_PATH`路径和JSON文件格式 |
| `Shape inference failed` | 在ONNX符号函数中明确定义输出形状 |
| `Kernel not found` | 确认`.so`文件与芯片架构匹配(如Ascend310P3) |
| 性能低于预期 | 使用`Tiling`技术优化核函数内存访问模式 |
> **重要提示**:转换前需确保:
> 1. CANN版本与PyTorch版本兼容(建议CANN>=7.0)
> 2. 自定义算子已在NPU环境中通过单算子测试
> 3. ONNX模型能正确加载自定义算子节点[^1]