利用边界距离回归和像素分类网络实现超声图像肾脏自动分割
这篇文章是华中科技大学与宾夕法尼亚大学合作的,于2020年发表在医学图像领域的顶刊Medical Image Analysis,是作者在2019年发表在ISBI的会议论文的拓展。
摘要翻译
虽然半自动的方法已经取得了很好的效果,但由于儿童肾小管形状和图像强度分布的不同,在临床超声(US)图像中自动分割肾脏仍然具有挑战性。在本研究中,我们提出后续的边界距离回归和像素分类网络来自动分割肾脏。具体地说,我们首先使用预先训练的自然图像分类的深度神经网络从超声图像中提取高阶图像特征。利用边界距离回归网络将这些特征作为输入来学习肾脏边界距离图,并采用端到端学习的逐像素分类网络将预测的边界距离图划分为肾脏像素和非肾脏像素。我们还采用了基于肾脏形状配准的数据增强方法,从少量人工分割肾脏标签的超声图像中生成丰富的训练数据。实验结果表明,我们的方法能够实现肾脏的自动分割,具有良好的性能,明显优于基于深度学习的像素分类网络。