421. 数组中两个数的最大异或值

这篇博客介绍了如何在给定整数数组中,使用字典树(Trie)和哈希表数据结构在O(n)时间内找到最大异或结果。通过遍历数组,构建字典树并将每个元素添加进去,同时用哈希表存储前缀异或值,从而在后续遍历中快速找到最大异或配对。两种方法分别通过Trie的路径和哈希表的查找实现高效计算,为算法设计提供了新的思路。
摘要由CSDN通过智能技术生成

给你一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中 0 ≤ i ≤ j < n 。

进阶:你可以在 O(n) 的时间解决这个问题吗?

示例 1:

输入:nums = [3,10,5,25,2,8]
输出:28
解释:最大运算结果是 5 XOR 25 = 28.

示例 2:

输入:nums = [0]
输出:0

示例 3:

输入:nums = [2,4]
输出:6

示例 4:

输入:nums = [8,10,2]
输出:10

示例 5:

输入:nums = [14,70,53,83,49,91,36,80,92,51,66,70]
输出:127

提示:

1 <= nums.length <= 2 * 104
0 <= nums[i] <= 231 - 1

2.前缀

struct Trie {
    // 左子树指向表示 0 的子节点
    Trie* left = NULL;
    // 右子树指向表示 1 的子节点
    Trie* right = NULL;

    Trie() {}
};

class Solution {
private:
    // 字典树的根节点
    Trie* root = new Trie();
    // 最高位的二进制位编号为 30
    int C = 30;

public:
    void add(int num) {
        Trie* cur = root;
        for (int k = C; k >= 0; k--) {
            int bit = (num >> k) & 1;
            if (bit == 0) {
                if (cur->left==NULL) {
                    cur->left = new Trie();
                }
                cur = cur->left;
            }
            else {
                if (cur->right==NULL) {
                    cur->right = new Trie();
                }
                cur = cur->right;
            }
        }
    }

    int check(int num) {
        Trie* cur = root;
        int x = 0;
        for (int k = C; k >= 0; --k) {
            int bit = (num >> k) & 1;
            if (bit == 0) {
                // a_i 的第 k 个二进制位为 0,应当往表示 1 的子节点 right 走
                if (cur->right) {
                    cur = cur->right;
                    x = x * 2 + 1;
                }
                else {
                    cur = cur->left;
                    x = x * 2;
                }
            }
            else {
                // a_i 的第 k 个二进制位为 1,应当往表示 0 的子节点 left 走
                if (cur->left) {
                    cur = cur->left;
                    x = x * 2 + 1;
                }
                else {
                    cur = cur->right;
                    x = x * 2;
                }
            }
        }
        return x;
    }

    int findMaximumXOR(vector<int>& nums) {
        int n = nums.size();
        int x = 0;
        for (int i = 1; i < n; ++i) {
            // 将 nums[i-1] 放入字典树,此时 nums[0 .. i-1] 都在字典树中
            add(nums[i - 1]);
            // 将 nums[i] 看作 ai,找出最大的 x 更新答案
            x = max(x, check(nums[i]));
        }
        return x;
    }
};

1.哈希表

class Solution {

public:
    int findMaximumXOR(vector<int>& nums) {
        int x=0;
        //这 31 个二进制位从低位到高位依次编号为 0, 1, ..., 30
        //0,1,⋯,30 我们从最高位第 30 个二进制位开始,依次确定     
        //x的每一位是0还是1


        for (int k = 30; k >= 0; k--) {
            unordered_set<int> seen;
            // 将所有的 pre^k(a_j) 放入哈希表中
            for (int num: nums) {
                // 如果只想保留从最高位开始到第 k 个二进制位为止的部分
                // 只需将其右移 k 位
                seen.insert(num >> k);
            }

            // 目前 x 包含从最高位开始到第 k+1 个二进制位为止的部分
            // 我们将 x 的第 k 个二进制位置为 1,即为 x = x*2+1
            int x_next = x * 2 + 1;
            bool found = false;
            
            // 枚举 i
            for (int num: nums) {
                //或 
                if (seen.count(x_next ^ (num >> k))) {
                    found = true;
                    break;
                }
            }

            if (found) {
                x = x_next;
            }
            else {
                // 如果没有找到满足等式的 a_i 和 a_j,那么 x 的第 k 个二进制位只能为 0
                // 即为 x = x*2
                x = x_next - 1;
            }
        }
        return x;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值