给你一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中 0 ≤ i ≤ j < n 。
进阶:你可以在 O(n) 的时间解决这个问题吗?
示例 1:
输入:nums = [3,10,5,25,2,8]
输出:28
解释:最大运算结果是 5 XOR 25 = 28.
示例 2:
输入:nums = [0]
输出:0
示例 3:
输入:nums = [2,4]
输出:6
示例 4:
输入:nums = [8,10,2]
输出:10
示例 5:
输入:nums = [14,70,53,83,49,91,36,80,92,51,66,70]
输出:127
提示:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 231 - 1
2.前缀
struct Trie {
// 左子树指向表示 0 的子节点
Trie* left = NULL;
// 右子树指向表示 1 的子节点
Trie* right = NULL;
Trie() {}
};
class Solution {
private:
// 字典树的根节点
Trie* root = new Trie();
// 最高位的二进制位编号为 30
int C = 30;
public:
void add(int num) {
Trie* cur = root;
for (int k = C; k >= 0; k--) {
int bit = (num >> k) & 1;
if (bit == 0) {
if (cur->left==NULL) {
cur->left = new Trie();
}
cur = cur->left;
}
else {
if (cur->right==NULL) {
cur->right = new Trie();
}
cur = cur->right;
}
}
}
int check(int num) {
Trie* cur = root;
int x = 0;
for (int k = C; k >= 0; --k) {
int bit = (num >> k) & 1;
if (bit == 0) {
// a_i 的第 k 个二进制位为 0,应当往表示 1 的子节点 right 走
if (cur->right) {
cur = cur->right;
x = x * 2 + 1;
}
else {
cur = cur->left;
x = x * 2;
}
}
else {
// a_i 的第 k 个二进制位为 1,应当往表示 0 的子节点 left 走
if (cur->left) {
cur = cur->left;
x = x * 2 + 1;
}
else {
cur = cur->right;
x = x * 2;
}
}
}
return x;
}
int findMaximumXOR(vector<int>& nums) {
int n = nums.size();
int x = 0;
for (int i = 1; i < n; ++i) {
// 将 nums[i-1] 放入字典树,此时 nums[0 .. i-1] 都在字典树中
add(nums[i - 1]);
// 将 nums[i] 看作 ai,找出最大的 x 更新答案
x = max(x, check(nums[i]));
}
return x;
}
};
1.哈希表
class Solution {
public:
int findMaximumXOR(vector<int>& nums) {
int x=0;
//这 31 个二进制位从低位到高位依次编号为 0, 1, ..., 30
//0,1,⋯,30 我们从最高位第 30 个二进制位开始,依次确定
//x的每一位是0还是1
for (int k = 30; k >= 0; k--) {
unordered_set<int> seen;
// 将所有的 pre^k(a_j) 放入哈希表中
for (int num: nums) {
// 如果只想保留从最高位开始到第 k 个二进制位为止的部分
// 只需将其右移 k 位
seen.insert(num >> k);
}
// 目前 x 包含从最高位开始到第 k+1 个二进制位为止的部分
// 我们将 x 的第 k 个二进制位置为 1,即为 x = x*2+1
int x_next = x * 2 + 1;
bool found = false;
// 枚举 i
for (int num: nums) {
//或
if (seen.count(x_next ^ (num >> k))) {
found = true;
break;
}
}
if (found) {
x = x_next;
}
else {
// 如果没有找到满足等式的 a_i 和 a_j,那么 x 的第 k 个二进制位只能为 0
// 即为 x = x*2
x = x_next - 1;
}
}
return x;
}
};