题目:
给定一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中 0 ≤ i ≤ j < n 。(计算其中任意两个数字的异或最大值)
输入:nums = [3,10,5,25,2,8]
输出:28
解释:最大运算结果是 5 XOR 25 = 28.
分析:
异或的特点是如果两个相同数位异或的结果是0,那么相反的数位异或结果为1,如果想找到某个整数k和其他整数的最大异或值,尽量找和k数位不同的整数。
这题目可以直接使用蛮力法,找出所有可能由两个数字组成的数对并求出它们的异或,通过比较就能得到最大的异或值,如果整数数组长度为n,那么直观的算法时间复杂度为O(n^2)。
该问题可以变成查找问题,而且是按照整数二进制数位进行查找的问题,需要将整数数位都保存下来,前缀树就可以做到,并且整数都是32位的,整数在前缀树中对应的路径长度都是一样的。
具体操作看代码。
针对这段代码,可能不太好理解,可以看下面的图片推导,由于异或是不同为1,相同为0,1更大,并且1出现在高位更大,因此我们从最高位开始找不同,根据一个数字对应的数位,从高位开始在前缀树中找与其不同的数位,找到不同的数位xor也就是异或值就左移一位后加1,然后到其孩子节点接着判断是否和数字的下一个数位不同,以此类推,如果相同xor左移一位不加1,一直到数字数位遍历完就能找到该数字的最大异或值,然后接着判断下一个数字的最大异或值,最后选出整个数组最大的异或值、
for (int i = 31; i >= 0; i--) {
int bit = (num >> i)&1;
// 如果前缀树中存在某个整数的相同位置的数位和num的数位相反,则优先选择相反的数位
// 这是因为两个相反的数位异或的结果为1
if (node.children[1-bit] !=null){
xor = (xor<<1) + 1;
node = node.children[1-bit];
}else {
xor = xor<<1;
node = node.children[bit];
}
max = Math.max(max,xor);
}
由于两个函数都有两层循环,第一层循环逐个扫描数组中的每个整数,而二层循环的执行次数是32次,是一个常数因此该算法时间复杂度为O(n)。
代码:
public class FindMaximumXOR {
public static void main(String[] args) {
FindMaximumXOR findMaximumXOR = new FindMaximumXOR();
int[] nums = {3,10,5,25,2,8};
int maximumXOR = findMaximumXOR.findMaximumXOR(nums);
System.out.println(maximumXOR);
}
static class TrieNode{
public TrieNode[] children;
public TrieNode() {
children = new TrieNode[2];
}
}
// 由于整数都是32位的,前缀树对应的路径长度是一样的
public TrieNode buildTrie(int[] nums){
TrieNode root = new TrieNode();
for (int num : nums) {
TrieNode node = root;
for (int i = 31; i >=0 ; i--) {
// bit相当于一个数字的32位通过循环依次从第1位到第32位的数字
int bit = (num >> i)&1;
if (node.children[bit] == null){
node.children[bit] = new TrieNode();
}
node = node.children[bit];
}
}
return root;
}
public int findMaximumXOR(int[] nums){
TrieNode root = buildTrie(nums);
int max = 0;
for (int num :nums){
TrieNode node = root;
// xor为异或值
int xor = 0;
// 从高位开始扫描整数num的每个数位
for (int i = 31; i >= 0; i--) {
//bit是num的一个数位
int bit = (num >> i)&1;
// 如果前缀树中存在某个整数的相同位置的数位和num的数位相反,则优先选择相反的数位
// 这是因为两个相反的数位异或的结果为1
if (node.children[1-bit] !=null){
xor = (xor<<1) + 1;
node = node.children[1-bit];
}else {
xor = xor<<1;
node = node.children[bit];
}
max = Math.max(max,xor);
}
}
return max;
}
}