【SDOI2014/BZOJ3530】数数 AC自动机+数位DP

原题走这里

数位DP+AC自动机似乎是常见套路?
首先题目一看就能想到数位DP。同时题目还涉及到多模式串匹配,于是又要用到AC自动机。
于是,我们可以初步得到状态d[i][j],表示当前在第i位,在AC自动机中匹配到第j个节点时的方案数。
然而有以下几个问题:
第一,题目要求的是比n小的满足条件的数的个数,按照经典做法,我们应该加一维表示第i位之前是否与n相同。
第二,是匹配串中有前导0,而数中是不能的,因此状态就得变一变。

我的做法是将状态拆成d[i][j][0,1,2]分别代表正常状态,第i位之前都与n相同,以及第i位之前都为0.
然后三种状态同时转移:
d[i][j][0]=d[i1][c[j][k]][0]
d[i][j][1]=d[i1][c[j][n[i]]][1]+k=0n[i]1d[i1][c[j][k]][0]
d[i][j][2]=d[i1][j][2]+k=19d[i1][j][0]
其中从c[j][k]表示第j个节点的第k个儿子
然后我们可以滚动数组压掉一维,然后正常地DP就可以了。

恩,也许有人会问,fail指针去哪里了?
恩,这是一个来自刘汝佳的书的神奇优化,在建AC自动机的bfs中,如果c[u][i]不存在的话(u为队头),那么就把c[u][i]设成c[fail[u]][i],这样在具体匹配中就彻底不需要fail指针了。

为什么我的代码在LOJ和Luogu上都AC了就在BZOJ上WA,呜~~~~

具体实现见代码如下:

#include <bits/stdc++.h>
#define LL long long
#define MOD 1000000007
using namespace std;
char n[1210],temp[1210];
int m,top,len,c[1510][10],f[1510],q[1510],head=1,tail;
bool b[1510];
LL d[2][1510][3],ret;//位数,自动机状态,正常状态,本位之前全与n一致 ,本位之前全为0
void insert()
{
    int j=0;
    for(int i=0;i<strlen(temp);i++)
    {
        j=(c[j][temp[i]-'0']?c[j][temp[i]-'0']:c[j][temp[i]-'0']=++top);
    }
    b[j]=1;
}
void CreateAC()
{
    for(int i=0;i<10;i++)
    {
        if(c[0][i])q[++tail]=c[0][i];
    }
    while(head<=tail)
    {
        int u=q[head++];
        for(int i=0;i<10;i++)
        {
            int v=c[u][i];
            if(v)
            {
                q[++tail]=v;
                int vv=f[u];
                while(vv&&(!c[vv][i]))vv=f[vv];
                f[v]=c[vv][i];
            }
            else
            {
                c[u][i]=c[f[u]][i];
            }
        }
    }
}
LL dp()
{
    for(int i=0;i<=top;i++)
    {
        if(b[i])continue;
        for(int j=0;j<2;j++)
        {
            d[1][i][j]=1;
        }
    }
    for(register int i=0,cur=0;i<len-1;i++,cur^=1)
    {
        memset(d[cur],0,sizeof(d[cur]));
        for(register int j=0;j<=top;j++)
        {
            if(b[j])continue;
            for(register int k=0;k<(j?2:3);k++)
            {
                for(register int l=0;l<=(k==1?n[i]-'0':9);l++)
                {
                    if(l==0&&k==2)
                    {
                        d[cur][j][2]+=d[cur^1][j][2];
                    }
                    else if(l==n[i]-'0'&&k==1)
                    {
                        d[cur][j][1]+=d[cur^1][c[j][l]][1];         
                    }
                    else
                    {
                        d[cur][j][k]+=d[cur^1][c[j][l]][0];                     
                    }
                    d[cur][j][k]%=MOD;              
                }
            }   
        } 
    }
    for(int i=0;i<=n[len-1]-'0';i++)
    {
        (ret+=d[len&1][i==0?0:c[0][i]][i==0?2:(i==n[len-1]-'0'?1:0)])%=MOD;
    }
    return ret;
}
int main()
{
    scanf("%s\n%d",n,&m);
    len=strlen(n);
    for(int i=0,j=len-1;i<j;i++,j--)swap(n[i],n[j]);
    for(int i=1;i<=m;i++)
    {
        scanf("%s",temp);
        insert();
    }
    CreateAC();
    cout<<dp()<<endl; 
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页