【来自理工科的独有浪漫-给crush一朵夏天的雪花】--对于有限差分法的理解

写在前面:炎炎夏日,用代码给你的crush送上一朵雪花吧。一起感受一下偏微分方程的浪漫。
在这里插入图片描述

有限差分法相关参考资料

以下资料为我学习的来源:
链接1: 中科院的有限差分法的详细解释课程
链接2: 论文:Modeling and numerical simulations of dendritic crystal growth
链接3: 知乎 对应上文解释 代码来源!

先上手看代码,然后理解数理概念

要注释

from numpy import *

# 定义参数

# 本模块对应的知识点1【划分网格对于求解二维偏微分方程的作用】
# 网格的行数,列数以及时间迭代的总步数
M,  N,  K   = 300,  300,  4000 
# 空间时长步长
Dx, Dy, Dt  = 0.01, 0.01, 1e-5


# 材料参数
# 包含物理和材料属性参数,包括相场动力学时间常数、各向异性能量强度、相场方向依赖的强度、晶格取向因子、参考取向、界面宽度参数、温度敏感度、平衡温度和热耦合系数。
# 为求解数学物理方程中的控制物理生成物形态的参数
tau = 3e-4
eps_bar = 0.01
sigma = 0.02
J = 4.
theta_0 = 0.2
alpha = 0.9
gamma = 10.
T_eq = 1.
kappa = 1.8


# 初始条件设置
p = zeros((M, N))
T = zeros((M, N))

# 半径为sqrt(5.0)的圆内,被视为初始固化区域的一部分,这部分我们认为相变已经完成,即雪花已经开始产生
for i in range(M):
    for j in range(N):
        if (i - M/2)**2 + (j - N/2)**2 < 5.0:  
            p[i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值