目录
写在前面:炎炎夏日,用代码给你的crush送上一朵雪花吧。一起感受一下偏微分方程的浪漫。
有限差分法相关参考资料
以下资料为我学习的来源:
链接1: 中科院的有限差分法的详细解释课程
链接2: 论文:Modeling and numerical simulations of dendritic crystal growth
链接3: 知乎 对应上文解释 代码来源!
先上手看代码,然后理解数理概念
要注释
from numpy import *
# 定义参数
# 本模块对应的知识点1【划分网格对于求解二维偏微分方程的作用】
# 网格的行数,列数以及时间迭代的总步数
M, N, K = 300, 300, 4000
# 空间时长步长
Dx, Dy, Dt = 0.01, 0.01, 1e-5
# 材料参数
# 包含物理和材料属性参数,包括相场动力学时间常数、各向异性能量强度、相场方向依赖的强度、晶格取向因子、参考取向、界面宽度参数、温度敏感度、平衡温度和热耦合系数。
# 为求解数学物理方程中的控制物理生成物形态的参数
tau = 3e-4
eps_bar = 0.01
sigma = 0.02
J = 4.
theta_0 = 0.2
alpha = 0.9
gamma = 10.
T_eq = 1.
kappa = 1.8
# 初始条件设置
p = zeros((M, N))
T = zeros((M, N))
# 半径为sqrt(5.0)的圆内,被视为初始固化区域的一部分,这部分我们认为相变已经完成,即雪花已经开始产生
for i in range(M):
for j in range(N):
if (i - M/2)**2 + (j - N/2)**2 < 5.0:
p[i