【序列推荐】Recformer:Text Is All You Need: Learning Language Representations for Sequential Recommendatio

#论文题目:【Recformer】Text Is All You Need: Learning Language Representa
#论文地址:https://arxiv.org/pdf/2305.13731.pdf
#论文源码开源地址:暂无
#论文所属会议:KDD’23
#论文所属单位:Amazon
在这里插入图片描述

一、导读

本文是针对序列推荐所提出的相关方法,以往的方法都是依赖用户交互的商品ID序列来反映用户偏好,但是遇到冷启动问题的时候会难以应对。本文用自然语言的方式对用户偏好和商品特征进行建模。

  • 将商品表示为“句子”(单词序列),从而使用户的商品序列变成句子序列。
  • 提出Recformer方法来理解“句子”序列并检索下一个“句子”。
  • 为了对商品序列进行编码,设计一个类似于Longformer模型的双向Transformer。
  • 提出新的预训练和微调方法将语言任务和推荐任务结合

二、模型结构

2.1 问题定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 Recformer

在这里插入图片描述

2.2.1 输入

在这里插入图片描述

2.2.2 Embedding层

Recformer的目标是从自然语言和序列模式来理解模型输入X,其中的关键思想是将来自语言模型和自注意力序列推荐的embedding层结合起来。Recformer包含以下四种embedding:

  • Token Embedding(A):来表征对应的token,即商品属性中的文字token对应的embedding。以往的方法要用到商品ID,因此对于新来的ID会不认识,但是对于这种token的方式,即使是新来的商品,他也会有比如颜色,品牌等描述。
  • Token Position Embedding(B):表征token在序列中的位置
  • Token type Embedding(C):表征这个token的类型,有三种分别是CLS,key和value。不同的类型对最终过的推荐有不同的作用。
  • Item Position Embedding(D):表征当前商品在序列中的位置

那么对于给定序列中的一个word w,其表征可以表示为:
在这里插入图片描述
则序列表征表示为:
在这里插入图片描述

2.2.3 item或序列表征

E E Ex进行编码,采用双向Transformer结构的Longformer,因为X通常是一个长序列,Longformer中的局部窗口注意力可以有效地编码 E E Ex。作为Longformer中用于文档理解的标准设置,token[CLS]具有全局注意力,但其他token使用局部窗口注意力。因此,Recformer计算d维单词表征方式如下:
在这里插入图片描述
在这里插入图片描述

2.2.4 预测

根据用户交互序列之间的余弦相似性来预测下一个商品。表示如下, h h hs为序列表征, h h hi为商品表征:
在这里插入图片描述

2.3 学习框架

2.3.1 预训练

在Recformer中需要同时考虑语言理解和推荐,因此预训练包含两个任务:MLM和item-item的对比学习任务。 添加MLM作为辅助任务将防止语言模型在与其他特定任务联合训练时忘记单词语义。对于推荐任务,MLM还可以消除一般语言语料库和商品文本之间的语言领域差距。基于BERT,训练数据生成器随机选择15%的token位置进行预测。如果选择了token,则(1)80%的概率将token替换为[MASK];(2) 10%的概率替换为随机token;(3)10%的概率不改变token。MLM损失计算如下:

在这里插入图片描述
Recformer的另一个预训练任务是item-item对比学习(IIC)任务。使用真实的下一个交互item作为正样本。对于负样本,采用当前batch中其他序列对应的真实的下一个交互item,这有可能引入false negative样本,但是样本量够大的话,上述影响应该较小,并且比监督学习效率更高。对比损失如下:
在这里插入图片描述
因此预训练的损失函数为:
在这里插入图片描述

2.3.2 两阶段微调

在这里插入图片描述

在这里插入图片描述

三、结果

在这里插入图片描述
参考:https://zhuanlan.zhihu.com/p/632785193

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值