2594: [Wc2006]水管局长数据加强版

2594: [Wc2006]水管局长数据加强版

Time Limit: 25 Sec   Memory Limit: 128 MB
Submit: 2556   Solved: 817
[ Submit][ Status][ Discuss]

Description

SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处送往y处,嘟嘟需要为供水公司找到一条从A至B的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了。嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项。
在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗、消毒等等。嘟嘟在控制中心一声令下,这些水管的准备操作同时开始,但由于各条管道的长度、内径不同,进行准备操作需要的时间可能不同。供水公司总是希望嘟嘟能找到这样一条送水路径,路径上的所有管道全都准备就绪所需要的时间尽量短。嘟嘟希望你能帮助他完成这样的一个选择路径的系统,以满足供水公司的要求。另外,由于MY市的水管年代久远,一些水管会不时出现故障导致不能使用,你的程序必须考虑到这一点。
不妨将MY市的水管网络看作一幅简单无向图(即没有自环或重边):水管是图中的边,水管的连接处为图中的结点。
 

Input

输入文件第一行为3个整数:N, M, Q分别表示管道连接处(结点)的数目、目前水管(无向边)的数目,以及你的程序需要处理的任务数目(包括寻找一条满足要求的路径和接受某条水管坏掉的事实)。
以下M行,每行3个整数x, y和t,描述一条对应的水管。x和y表示水管两端结点的编号,t表示准备送水所需要的时间。我们不妨为结点从1至N编号,这样所有的x和y都在范围[1, N]内。
以下Q行,每行描述一项任务。其中第一个整数为k:若k=1则后跟两个整数A和B,表示你需要为供水公司寻找一条满足要求的从A到B的水管路径;若k=2,则后跟两个整数x和y,表示直接连接x和y的水管宣布报废(保证合法,即在此之前直接连接x和y尚未报废的水管一定存在)。
 

Output

按顺序对应输入文件中每一项k=1的任务,你需要输出一个数字和一个回车/换行符。该数字表示:你寻找到的水管路径中所有管道全都完成准备工作所需要的时间(当然要求最短)。
 

Sample Input

4 4 3
1 2 2
2 3 3
3 4 2
1 4 2
1 1 4
2 1 4
1 1 4

Sample Output

2
3

【原题数据范围】
N ≤ 1000
M ≤ 100000
Q ≤ 100000
测试数据中宣布报废的水管不超过5000条;且任何时候我们考虑的水管网络都是连通的,即从任一结点A必有至少一条水管路径通往任一结点B。

【加强版数据范围】
N ≤ 100000
M ≤ 1000000
Q ≤ 100000
任何时候我们考虑的水管网络都是连通的,即从任一结点A必有至少一条水管路径通往任一结点B。

【C/C++选手注意事项】
由于此题输入规模较大(最大的测试点约20MB),因此即使使用scanf读入数据也会花费较多的时间。为了节省读入耗时,建议使用以下函数读入正整数(返回值为输入文件中下一个正整数):
int getint()
{
char ch = getchar();
for ( ; ch > '9' || ch < '0'; ch = getchar());
int tmp = 0;
for ( ; '0' <= ch && ch <= '9'; ch = getchar())
tmp = tmp * 10 + int(ch) - 48;
return tmp;
}


HINT

Source

[ Submit][ Status][ Discuss]


数据加强??
我们把操作倒过来看看??
于是删边操作等价于加边
问题变成,,不断加边与询问(x,y)路径上权值最大的边,还是一样,,边也看成点来搞splay
于是这题就完啦!!
完了???

我TM,,,T了一个早上,,,一个早上,,,读入输出优化都上了,还是没用。。GG
实际上,,splay拥有巨大的常数~如果m条边,每条都去检验下,,GG
所以一开始用kruskal算法来配合加边操作,立刻跑得飞起~
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;

const int maxn = 1E5 + 10;
const int maxm = 11*maxn; 
const int INF = ~0U>>1;
const int mo = 10000007;

struct E{
	int x,y,t,id;
	E(int _x = 0,int _y = 0,int _t = 0) {x = _x; y = _y; t = _t;}
    bool operator < (const E &b) const {
        if (x < b.x) return 1;
        if (x > b.x) return 0;
        return y < b.y;  
    }
}edgs[maxn*10],e[maxn*10];

int n,m,tot,q,ch[maxm][2],rev[maxm],fa[maxm],ans[maxn],typ[maxn],s[maxn*2],
	Fa[maxn],A[maxn],B[maxn],key[maxm],pfa[maxm],Max[maxm],pos[maxm]; 
bool not_use[maxn*10];

bool cmp(const E &a,const E &b) {return a.t < b.t;}

void maintain(int x)
{
	Max[x] = key[x]; pos[x] = x;
	if (ch[x][0] && Max[ch[x][0]] > Max[x]) Max[x] = Max[ch[x][0]],pos[x] = pos[ch[x][0]];
	if (ch[x][1] && Max[ch[x][1]] > Max[x]) Max[x] = Max[ch[x][1]],pos[x] = pos[ch[x][1]];
}

void rotate(int x)
{
	int y = fa[x],z = fa[y];
	pfa[x] = pfa[y]; pfa[y] = 0;
	int d = ch[y][1] == x?1:0;
	ch[y][d] = ch[x][d^1];
	if (ch[y][d]) fa[ch[y][d]] = y; maintain(y); 
	ch[x][d^1] = y;  fa[y] = x; 
	fa[x] = z; maintain(x);
	if (z) ch[z][ch[z][1] == y] = x,maintain(z);
}

void pushdown(int x)
{
	if (rev[x]) {
		swap(ch[x][0],ch[x][1]); rev[x] ^= 1;
		if (ch[x][0]) rev[ch[x][0]] ^= 1;
		if (ch[x][1]) rev[ch[x][1]] ^= 1;
	}
}
	
void splay(int x)
{
	int top = 0; 
	for (int now = x; now; now = fa[now]) s[++top] = now;
	while (top) {pushdown(s[top--]);}
	for (int y; y = fa[x]; rotate(x))
		if (fa[y])
			rotate((ch[fa[y]][0] == y)^(ch[y][0] == x)?y:x);
}

int getint()
{
	char ch = getchar();
	int ret = 0;
	while (ch < '0' || '9' < ch) ch = getchar();
	while ('0' <= ch && ch <= '9') ret = ret*10 + ch - '0',ch = getchar();
	return ret;
}

void Access(int x)
{
	for (int u = x,v = 0; u; v = u,u = pfa[u]) {
		splay(u);
		if (ch[u][1]) fa[ch[u][1]] = 0,pfa[ch[u][1]] = u;
		if (v) pfa[v] = 0,fa[v] = u;
		ch[u][1] = v; maintain(u);
	}
}
void ChangeRoot(int x) {Access(x); splay(x); rev[x] ^= 1;}
void Join(int x,int y) {ChangeRoot(x); pfa[x] = y;}
void Cut(int x,int y) {ChangeRoot(x); Access(y); splay(y); fa[x] = ch[y][0] = 0; maintain(y);}
int Find_Root(int x) 
{
	Access(x); splay(x); 
	while (ch[x][0]) x = ch[x][0];
	splay(x); return x; 
}

void Add(int k)
{
	int x = edgs[k].x,y = edgs[k].y;
	int fx = Find_Root(x);
	int fy = Find_Root(y);
	if (fx != fy) {
		Join(x,n+k); Join(n+k,y);
		return;
	}
	ChangeRoot(x);
	Access(y); splay(y);
	if (Max[ch[y][0]] <= edgs[k].t) return;
	int cut = pos[ch[y][0]];
	Cut(edgs[cut-n].x,cut); Cut(cut,edgs[cut-n].y);
	Join(x,n+k); Join(n+k,y);
}

int Query(int k)
{
	ChangeRoot(A[k]);
	Access(B[k]); splay(B[k]);
	return Max[B[k]];
}

int num;
char c[20]; 

void print( int k )  
{  
    num = 0;  
    while( k > 0 ) c[++num] = k % 10, k /= 10;  
    while( num )   
        putchar( c[num--]+48 );  
    putchar( 10 );  
}   

int Search(int k,int l,int r)
{
    if (l == r) return l;
    int mid = (l + r) >> 1;
    if (edgs[mid].x == A[k] && edgs[mid].y == B[k]) return mid;
    if (edgs[mid].x < A[k]) return Search(k,mid+1,r);
    if (edgs[mid].x > A[k]) return Search(k,l,mid);
    if (edgs[mid].y < B[k]) return Search(k,mid+1,r);
    return Search(k,l,mid);
}

int father(int x) {return x == Fa[x]?x:Fa[x] = father(Fa[x]);}
void Add2(int k) {Join(edgs[k].x,n+k); Join(n+k,edgs[k].y);}

void kruskal()
{
	for (int i = 1; i <= n; i++) Fa[i] = i;
	for (int i = 1; i <= m; i++) e[i] = edgs[i],e[i].id = i;
	sort(e + 1,e + m + 1,cmp);
	for (int i = 1; i <= m; i++)
		if (!not_use[e[i].id]) {
			int fx = father(e[i].x);
			int fy = father(e[i].y);
			if (fx != fy) {
				Fa[fx] = fy;
				Add2(e[i].id);
			}
		}
}

int main()
{
	#ifdef DMC
		freopen("tube7.in","r",stdin);
		freopen("test.txt","w",stdout);
	#endif
	
	n = getint(); m = getint(); q = getint();
	for (int i = 1; i <= m; i++) {
		int x = getint(),y = getint(),t = getint();
		if (x > y) swap(x,y);
		edgs[i] = E(x,y,t);
	}
	sort(edgs + 1,edgs + m + 1);
	for (int i = 1; i <= n; i++) Max[i] = key[i] = -INF;
	for (int i = n + 1; i <= n + m; i++) Max[i] = key[i] = edgs[i-n].t;
	
	for (int i = 1; i <= q; i++) {
		typ[i] = getint(); A[i] = getint(); B[i] = getint();
		if (A[i] > B[i]) swap(A[i],B[i]);
		if (typ[i] == 2) {
			A[i] = Search(i,1,m);
			not_use[A[i]] = 1;
		}
	}
	kruskal();
	for (int i = q; i; i--) 
		if (typ[i] == 1) ans[i] = Query(i);
		else Add(A[i]);
	for (int i = 1; i <= q; i++)
		if (typ[i] == 1)
			print(ans[i]);
 	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值