引言
本蒟蒻实力有限,可能有些代码是错误,希望多多包涵,欢迎指出。喜欢本篇文章请一键三连,谢谢~
填空题
请问在 1 到 2020 中,有多少个数既是 4 的整数倍,又是 6 的整数倍
#include <iostream>
using namespace std;
int main()
{
int ans = 0;
for(int i = 1; i <= 2020; ++i)
if(i%4 == 0 && i %6 == 0) ans++;
cout<<ans<<endl;
return 0;
}
My Answer:
168
小明要用二进制来表示 1 到 10000 的所有整数,要求不同的整数用不同的
二进制数表示,请问,为了表示 1 到 10000 的所有整数,至少需要多少个
二进制位?
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
int main()
{
int temp = 0;
string s;
int ans = 0;
for(int i = 1; i <= 10000; i++)
{
s.clear();
int t = i;
while(t>0)
{
int yu = t%2;
t /= 2;
s = s + (char)(yu + '0');
}
//cout<<s.size()<<endl;
ans += s.size();
int x = s.size();
temp = max(temp,x);
}
cout<<temp<<endl;
cout<<ans<<endl;
return 0;
}
My Answer:
14
请问有多少个序列满足下面的条件:
1. 序列的长度为 5。
2. 序列中的每个数都是 1 到 10 之间的整数。
3. 序列中后面的数大于等于前面的数。
#include <iostream>
#include <cstring>
using namespace std;
int a[6];
int main()
{
int ans = 0;
for(int i = 10000; i <= 99999; ++i)
{
memset(a, 0, sizeof a);
int t = i, idx = 0;
while(t>0)
{
a[idx++] = t%10;
t /= 10;
}
int ok = 1;
for(int j = 0; j < idx-1; j++)
if(a[j] < a[j+1] || a[j] <= 1) ok = 0;
if(ok) ans++;
}
cout<<ans<<endl;
return 0;
}
My Answer:
1122
一个无向图包含 2020 条边,如果图中没有自环和重边,请问最少包含多
少个结点?
My Answer:
2021
两个字母之间的距离定义为它们在字母表中位置的距离。例如 A 和 C 的
距离为2,L 和 Q 的距离为 5。对于一个字符串,我们称字符串中两两字
符之间的距离之和为字符串的内部距离。例如:ZOO 的内部距离为 22,其
中 Z 和 O 的距离为 11。请问,LANQIAO 的内部距离是多少?
#include <iostream>
#include <cstring>
#include <string>
using namespace std;
int main()
{
int ans = 0;
string s = "LANQIAO";
for(int i = 0; i < s.size(); i++)
for(int j = i + 1; j < s.size(); j++)
{
// if(s[j] > s[i]) cout<<s[j]<<" - " <<s[i]<< " = "<<s[j]-s[i]<<endl;
// else cout<<s[i]<<" - " <<s[j]<< " = "<<s[i]-s[j ]<<endl;
if(s[j] < s[i]) ans = ans + (int)(s[i] - s[j]);
else ans = ans + (int)(s[j] - s[i]);
}
cout<<ans<<endl;
return 0;
}
My Answer:
162
编程题
题目描述
给定一个平行四边形的底边长度
l
l
l 和高度
h
h
h,求平行四边形的面积。
输入格式
输入的第一行包含一个整数
l
l
l,表示平行四边形的底边长度。
第二行包含一个整数
h
h
h,表示平行四边形的高。
输出格式
输出一个整数,表示平行四边形的面积。(提示:底边长度和高都是整数的平行四边形面积为整数)
样例输入
2
7
样例输出
14
数据规模和约定
对于所有评测用例:
1
≤
l
,
h
≤
100
1 \leq l, h \leq 100
1≤l,h≤100
#include <iostream>
#include <cstring>
#include <string>
using namespace std;
int main()
{
int l,h;
cin>>l>>h;
int ans = l*h;
cout<<ans<<endl;
return 0;
}
题目描述
现在时间是
a
a
a 点
b
b
b 分,请问
t
t
t 分钟后,是几点几分?
输入格式
输入的第一行包含一个整数
a
a
a。
第二行包含一个整数
b
b
b。
第三行包含一个整数
t
t
t。
输出格式
输出第一行包含一个整数,表示结果是几点。
第二行包含一个整数,表示结果是几分。
样例输入
3
20
165
样例说明
6
5
数据规模和约定
对于所有评测用例:
0
≤
a
≤
23
,
0
≤
b
≤
59
,
0
≤
t
,
t
0 \leq a \leq 23, 0 \leq b \leq 59, 0 \leq t, t
0≤a≤23,0≤b≤59,0≤t,t 分钟后还是在当天。
#include <iostream>
#include <cstring>
#include <string>
using namespace std;
int main()
{
int a,b,t;
cin>>a>>b>>t;
int yu = (b+t)%60;
int s = (b+t)/60;
cout<<(a+s)<<endl;
cout<<yu<<endl;
return 0;
}
题目描述
小蓝负责花园的灌溉工作。
花园可以看成一个
n
n
n 行
m
m
m 列的方格图形。中间有一部分位置上安装有出水管。
小蓝可以控制一个按钮同时打开所有的出水管,打开时,有出水管的位置可以被认为已经灌溉好。
每经过一分钟,水就会向四面扩展一个方格,被扩展到的方格可以被认为已经灌溉好。即如果前一分钟某一个方格被灌溉好,则下一分钟它上下左右的四个方格也被灌溉好。
给定花园水管的位置,请问
k
k
k 分钟后,有多少个方格被灌溉好?
输入格式
输入的第一行包含两个整数
n
n
n,
m
m
m。
第二行包含一个整数
t
t
t,表示出水管的数量。
接下来
t
t
t 行描述出水管的位置,其中第
i
i
i 行包含两个数
r
,
c
r, c
r,c 表示第
r
r
r 行第
c
c
c 列有一个排水管。
接下来一行包含一个整数
k
k
k。
输出格式
输出一个整数,表示答案。
样例输入
3 6
2
2 2
3 4
1
样例输出
9
样例说明
用1表示灌溉到,0表示未灌溉到。
打开水管时:
000000
010000
000100
1分钟后:
010000
111100
011110
共有9个方格被灌溉好。
数据规模和约定
对于所有评测用例:
1
≤
n
,
m
≤
100
,
1
≤
t
≤
10
,
1
≤
k
≤
100
1 \leq n, m \leq 100, 1 \leq t \leq 10, 1 \leq k \leq 100
1≤n,m≤100,1≤t≤10,1≤k≤100。
将最初水龙头的位置标记,存入队列,再用一个队列存储下一分钟蔓延的位置,每分钟结束,更新队列中的元素,最后输出在规定时间内灌溉的位置有多少个即可。
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
char mp[110][110];
int vis[110][110];
int dir[4][2] = {0,1,-1,0,0,-1,1,0};
struct node{
int x,y;
char ch;
};
node a[110];
bool inbound(int x, int l, int r)
{
if(x < l || x > r) return false;
return true;
}
int main()
{
int n,m,t;
cin>>n>>m>>t;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) vis[i][j] = 0, mp[i][j] = '0';
queue<node> q;
for(int i = 0; i < t; i++)
{
int x,y;
cin>>x>>y;
mp[x][y] = '1';
vis[x][y] = 1;
a[i] = {x,y,'1'};
q.push(a[i]);
}
int ans = t, k = 0;
cin>>k;
int time = 0;
queue<node> p;
while(!q.empty())
{
node now = q.front();
q.pop();
int x = now.x, y = now.y;
char ch = now.ch;
for(int i = 0; i < 4; i++)
{
int tx = x + dir[i][0];
int ty = y + dir[i][1];
if(!inbound(tx,1,n) || !inbound(ty,1,m)) continue;
if(!vis[tx][ty] && mp[tx][ty] == '0')
{
ans++;
node temp = {tx,ty,'1'};
mp[tx][ty] = '1';
p.push(temp);
}
}
if(q.empty())
{
time++;
while(!p.empty())
{
node s = p.front();
p.pop();
q.push(s);
}
}
if(time >= k) break;
}
cout<<ans<<endl;
/***
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
cout<<mp[i][j]<<" ";
}
cout<<'\n';
}
***/
return 0;
}
题目描述
小蓝有一张黑白图像,由
n
∗
m
n * m
n∗m 个像素组成,其中从上到下共
n
n
n 行,每行从左到右
m
m
m 列。每个像素由一个 0 到 255 之间的灰度值表示。
现在,小蓝准备对图像进行模糊操作,操作的方法为:
对于每个像素,将以它为中心 3 * 3 区域内的所有像素(可能是 9 个像素或少于 9 个像素)求和后除以这个范围内的像素个数(取下整),得到的值就是模糊后的结果。
请注意每个像素都要用原图中的灰度值计算求和。
输入格式
输入的第一行包含两个整数
n
,
m
n, m
n,m。
第 2 行到第
n
+
1
n + 1
n+1 行每行包含
m
m
m 个整数,表示每个像素的灰度值,相邻整数之间用一个空格分隔。
输出格式
输出
n
n
n 行,每行
m
m
m 个整数,相邻整数之间用空格分隔,表示模糊后的图像。
样例输入
3 4
0 0 0 255
0 0 255 0
0 30 255 255
样例输出
0 42 85 127
5 60 116 170
7 90 132 191
数据规模和约定
对于所有评测用例,
1
≤
n
,
m
≤
100
1 \leq n, m \leq 100
1≤n,m≤100。
扩展有8个方向扩展,然后以当前这个点为中心向 8 个方向扩展即可,最后按照题意求模糊值。
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
int vis[110][110];
int dir[8][2] = {0,1,-1,1,-1,0,-1,-1,0,-1,1,-1,1,0,1,1};
int mp[110][110];
int ans[110][110];
bool inbound(int x, int l, int r)
{
if(x < l || x > r) return false;
return true;
}
int main()
{
int n,m;
cin>>n>>m;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) cin>>mp[i][j];
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
int t = mp[i][j], cnt = 1;
for(int k = 0; k < 8; k++)
{
int tx = i + dir[k][0];
int ty = j + dir[k][1];
if(!inbound(tx,1,n) || !inbound(ty,1,m)) continue;
t += mp[tx][ty];
cnt++;
}
ans[i][j] = (int)(t/cnt);
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
if(j == 1) cout<<ans[i][j];
else cout<<" "<<ans[i][j];
cout<<'\n';
}
return 0;
}
题目描述
小蓝在一个
n
n
n 行
m
m
m 列的方格图中玩一个游戏。
开始时,小蓝站在方格图的左上角,即第 1 行第 1 列。
小蓝可以在方格图上走动,走动时,如果当前在第
r
r
r 行第
c
c
c 列,他不能走到行号比
r
r
r 小的行,也不能走到列号比
c
c
c 小的列。同时,他一步走的直线距离不超过3。
例如,如果当前小蓝在第 3 行第 5 列,他下一步可以走到第 3 行第 6 列、第 3 行第 7 列、第 3 行第 8 列、第 4 行第 5 列、第 4 行第 6 列、第 4 行第 7 列、第 5 行第 5 列、第 5 行第 6 列、第 6 行第 5 列之一。
小蓝最终要走到第
n
n
n 行第
m
m
m 列。
在图中,有的位置有奖励,走上去即可获得,有的位置有惩罚,走上去就要接受惩罚。奖励和惩罚最终抽象成一个权值,奖励为正,惩罚为负。
小蓝希望,从第 1 行第 1 列走到第
n
n
n 行第
m
m
m 列后,总的权值和最大。请问最大是多少?
输入格式
输入的第一行包含两个整数
n
,
m
n, m
n,m,表示图的大小。
接下来
n
n
n 行,每行
m
m
m 个整数,表示方格图中每个点的权值。
输出格式
输出一个整数,表示最大权值和。
样例输入
3 5
-4 -5 -10 -3 1
7 5 -9 3 -10
10 -2 6 -10 -4
样例输出
15
数据规模和约定
对于30%的评测用例,
1
≤
n
,
m
≤
10
1 \leq n, m \leq 10
1≤n,m≤10;
对于50%的评测用例,
1
≤
n
,
m
≤
20
1 \leq n, m \leq 20
1≤n,m≤20;
对于所有评测用例,
1
≤
n
≤
100
,
−
10000
≤
权
值
≤
10000
1 \leq n \leq 100,-10000 \leq 权值 \leq 10000
1≤n≤100,−10000≤权值≤10000
动态规划, d p [ i ] [ j ] dp[i][j] dp[i][j] 表示在第 i i i 第 j j j 列,属性表示权值,处理特殊的行和列以及特殊的点,然后其余点的状态转移方程就是在可以扩展来的点选取最大值加。答案就是 d p [ n ] [ m ] dp[n][m] dp[n][m]
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
using namespace std;
int vis[110][110];
int mp[110][110];
int ans[110][110];
int main()
{
int n,m;
memset(mp, 0, sizeof mp);
memset(ans,0,sizeof ans);
cin>>n>>m;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) cin>>mp[i][j],ans[i][j] = mp[i][j];
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
if(i == 1)
{
if(j == 1) continue;
else if(j == 2) ans[i][j] += mp[i][j-1];
else if(j == 3) ans[i][j] += max(mp[i][j-2],ans[i][j-1]);
else ans[i][j] += max(ans[i][j-1],max(ans[i][j-2],mp[i][j-3]));
}
else if(j == 1)
{
if(i == 2) ans[i][j] += mp[i-1][j];
else if(i == 3) ans[i][j] += max(ans[i-1][j],mp[i-2][j]);
else ans[i][j] += max(ans[i-1][j],max(ans[i-2][j],mp[i-3][j]));
}
else if(i == 2 && j == 2)
{
ans[i][j] += max(mp[1][1],max(mp[1][2],mp[2][1]));
}
else if(i == 2 && j == 3)
{
int x = max(mp[1][1],mp[1][2]);
int y = max(mp[2][1],mp[2][2]);
ans[i][j] += max(mp[1][3],max(x,y));
}
else if(i == 3 && j == 2)
{
int x = max(mp[1][1],mp[1][2]);
int y = max(mp[2][1],mp[2][2]);
ans[i][j] += max(mp[3][1],max(x,y));
}
else
{
int x = max(ans[i][j-1],max(ans[i][j-2],ans[i][j-3]));
int y = max(ans[i-1][j],max(ans[i-2][j],ans[i-3][j]));
int z = max(ans[i-1][j-1],max(ans[i-2][j-1],ans[i-1][j-2]));
ans[i][j] += max(x,max(y,z));
}
}
}
/***
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
cout<<ans[i][j]<<" ";
}
cout<<'\n';
}
***/
cout<<ans[n][m]<<endl;
return 0;
}