🐓 时间复杂度
常用排序的时间复杂度
时间频度
算法需要花费的时间,和它语句执行的次数是成正比的,所以会把一个算法种语句执行次数称为语句频度和时间频度、记作T(n)。
定义
时间复杂度就是找到一个无限接近时间频度T(n)同数量级的函数,当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度
通俗一点就是找到一个和T(n)同一量级的函数F(n),写作O(f(n)),一般在程序中我们会看最内层或者说其执行次数最多的代码行。
时间复杂度计算
时间复杂度中O是受T(n)种n变化次数最多的那一项影响,比如:T(n) = n^3+n^2+n+23 那这个最大的影响项就是O( n^3)
常见的时间复杂度
阶数
执行次数函数举例 | 阶 | 非正式术语 |
---|---|---|
12 | O(1) | 常数阶 |
2n+3 | O(n)< |