时间复杂度
加法规则:多项相加,保留最高项,并将系数转化为1;
乘法规则:多项相乘都保留,并将系数化为1;
加法乘法混合规则:先小括号再乘法规则最后加法规则;
空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n))
,其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。所需的存储空间指的是一个算法在运行过程中的临时占用存储空间
一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。
往年真题
解析:多项相加,保留最高项,并将系数转化为1,可知时间复杂度为O(n);
解析:题目上面说A[]={0,-1,1,-1,0,1,-1…}
-1个数->n1
0个数->n2
1个数->n3
上面是第一步操作,把-1、0和1的个数分别赋值给n1、n2、n3,只需要一个for循环就能搞定,时间复杂度为O(n);第二个操作是把-1排列到最前面,之后是0,最后是1,升序排列,这只需要3个for循环就能搞定,时间复杂度为O(n),把这两个是间复杂度相加等于O(2n),也就是O(n);
定义的变量-也就是开辟的空间就只有n1、n2、n3,所以空间复杂度为O(1),答案为A;
int[] A={-1,1,0,-1,-1,1,0};
int n=A.length;
------------------------------
int n1=0,n2=0,n3=0;
for(int i=0;i<n;i++){
if(A[i]==-1) n1++;
else if (A[i]==0) n2++;
else n3++;
}
for(inti=0;i<n1;i++){A[i]=-1}
for(inti=n1;i<n1+n21;i++){A[i]=0}
for(inti=n1+n2;i<n;i++){A[i]=1}
解析:看时间复杂度先看循环,在While循环中有两个while,但是要先看这两个while循环的作用是什么,这两个while共同遍历了数组A,也就是两个while循环才把数组A中的元素给遍历完,所以这两个while循环加起来的时间复杂度才为O(n),总的时间复杂度为O(n);
代码中只定义了两个变量i和j,没有更多的开辟新空间,所以空间复杂度为O(1);
解析:这道题的答案为D,直接看文章最上面的复杂度排列;