搜索与图论——最短路——Bellman_Ford与SPFA

  1. Bellam_Ford算法
    **算法思想:**利用双重循环迭代更新每条边,最终求出到起始点的距离。外层循环控制从起点到终点需要更新的边的数量,内层循环更新每一条边。

例题:有边数限制的最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。
注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。
如果不存在满足条件的路径,则输出“impossible”。

数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 510, M = 100010;

int n, m, k;
int dist[N], backup[N];

struct Edges
{
	int a, b, w;
} edges[M];

int bellman_ford()
{
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;

	// 外层循环:每遍循环更新所有边(即后一个顶点到前一个顶点的距离)
	for(int i = 0; i < k; i++)
	{
		// 保存更新前的状态,保证不发生“串联”——前条边的更新导致后一条边提前更新
		memcpy(backup, dist, sizeof(dist));
		// 内层循环:遍历每一条边并更新距离
		for(int j = 0; j < m; j++)
		{
			int a = edges[j].a, b = edges[j].b, w = edges[j].w;
			dist[b] = min(dist[b], backup[a] + w);
		}
	}
	if(dist[n] >= 0x3f3f3f3f / 2) return -1;
	else return dist[n];
}
			
int main()
{
	cin >> n >> m >> k;

	for(int i = 0; i < m; i++)
	{
		int a, b, w;
		cin >> a >> b >> w;
		edges[i] = {a, b, w};
	}

	int t = bellman_ford();
	printf("%d", t);
	return 0;
}		

2. SPFA算法
**算法思路:**对Bellman_Ford算法的一种优化,每次只更新已经更新过最短距离的相邻节点

例题:spfa求最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。
数据保证不存在负权回路。

输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离。
如果路径不存在,则输出”impossible”。

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N = 100010;

int n, m;
int e[N], ne[N], h[N], idx, w[N];
int dist[N];
bool str[N];

void add(int a, int b, int c)
{
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx++;
}

int spfa()
{
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;

	queue<int> q;
	q.push(1);

	str[1] = true;

	while(q.size())
	{
		int t = q.front();
		q.pop();
		str[t] = false;
		
		for(int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];
			if(dist[j] > dist[t] + w[i])
			{
				dist[j] = dist[t] + w[i];
				if(!str[j])	
				{
					q.push(j);
					str[j] = true;
				}	
			}
		}
	}
	if(dist[n] > 0x3f3f3f3f / 2) return -1;
	else return dist[n];
}

int main()
{
	cin >> n >> m;

	memset(h, -1, sizeof(h));

	for(int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
	}

	int t = spfa();
	if(t == -1) printf("impossible\n");
	else printf("%d", t);
	return 0;
}	 					

3. SPFA算法判断图中是否存在负环
**算法思路:**新维护一个变量cnt[N]记录到达每个点的最短路经历了多少条边。如果到达某点所经历的边数大于等于所有点的数量n,则这条路径一定经历过一个点两次。又因为求的是最短路径,所以这个环一定是负环

例题:spfa判断负环
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。

输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
如果图中存在负权回路,则输出“Yes”,否则输出“No”。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N = 10010;

int n, m;
int e[N], ne[N], h[N], idx, w[N];
int dist[N], cnt[N];
bool str[N];

void add(int a, int b, int c)
{
	e[idx] = b;
	w[idx] = c;
	ne[idx] = h[a];
	h[a] = idx++;
}

bool spfa()
{
	memset(dist, 0x3f, sizeof(dist));
	dist[1] = 0;
	
	queue<int> q;
	for(int i = 1; i <= n; i++)	
	{
		q.push(i);
		str[i] = true;
	}

	while(q.size())
	{
		int t = q.front();
		q.pop();
		str[t] = false;

		for(int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];
			if(dist[j] > dist[t] + w[i])
			{
				dist[j] = dist[t] + w[i];
				cnt[j] = cnt[t] + 1;
				
				if(cnt[j] >= n) return true;
				if(!str[j])
				{
					q.push(j);
					str[j] = true;
				}
			}
		}
	}
	return false;
}	

int main()
{
	cin >> n >> m;
	 
	memset(h, -1, sizeof(h));

	for(int i = 0; i < m; i++)
	{
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
	}

	if(spfa()) printf("Yes\n");
	else printf("No\n");
	return 0;
}							
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值