- Bellam_Ford算法
**算法思想:**利用双重循环迭代更新每条边,最终求出到起始点的距离。外层循环控制从起点到终点需要更新的边的数量,内层循环更新每一条边。
例题:有边数限制的最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。
如果不存在满足条件的路径,则输出“impossible”。
数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 510, M = 100010;
int n, m, k;
int dist[N], backup[N];
struct Edges
{
int a, b, w;
} edges[M];
int bellman_ford()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
// 外层循环:每遍循环更新所有边(即后一个顶点到前一个顶点的距离)
for(int i = 0; i < k; i++)
{
// 保存更新前的状态,保证不发生“串联”——前条边的更新导致后一条边提前更新
memcpy(backup, dist, sizeof(dist));
// 内层循环:遍历每一条边并更新距离
for(int j = 0; j < m; j++)
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
dist[b] = min(dist[b], backup[a] + w);
}
}
if(dist[n] >= 0x3f3f3f3f / 2) return -1;
else return dist[n];
}
int main()
{
cin >> n >> m >> k;
for(int i = 0; i < m; i++)
{
int a, b, w;
cin >> a >> b >> w;
edges[i] = {a, b, w};
}
int t = bellman_ford();
printf("%d", t);
return 0;
}
2. SPFA算法
**算法思路:**对Bellman_Ford算法的一种优化,每次只更新已经更新过最短距离的相邻节点
例题:spfa求最短路
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示1号点到n号点的最短距离。
如果路径不存在,则输出”impossible”。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N = 100010;
int n, m;
int e[N], ne[N], h[N], idx, w[N];
int dist[N];
bool str[N];
void add(int a, int b, int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
int spfa()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
queue<int> q;
q.push(1);
str[1] = true;
while(q.size())
{
int t = q.front();
q.pop();
str[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!str[j])
{
q.push(j);
str[j] = true;
}
}
}
}
if(dist[n] > 0x3f3f3f3f / 2) return -1;
else return dist[n];
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof(h));
for(int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
int t = spfa();
if(t == -1) printf("impossible\n");
else printf("%d", t);
return 0;
}
3. SPFA算法判断图中是否存在负环
**算法思路:**新维护一个变量cnt[N]记录到达每个点的最短路经历了多少条边。如果到达某点所经历的边数大于等于所有点的数量n,则这条路径一定经历过一个点两次。又因为求的是最短路径,所以这个环一定是负环
例题:spfa判断负环
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数n和m。
接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
如果图中存在负权回路,则输出“Yes”,否则输出“No”。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N = 10010;
int n, m;
int e[N], ne[N], h[N], idx, w[N];
int dist[N], cnt[N];
bool str[N];
void add(int a, int b, int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
bool spfa()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
queue<int> q;
for(int i = 1; i <= n; i++)
{
q.push(i);
str[i] = true;
}
while(q.size())
{
int t = q.front();
q.pop();
str[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if(cnt[j] >= n) return true;
if(!str[j])
{
q.push(j);
str[j] = true;
}
}
}
}
return false;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof(h));
for(int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
if(spfa()) printf("Yes\n");
else printf("No\n");
return 0;
}