1. 用途
由裴蜀定理知:给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b), 扩展欧几里得算法可以计算出ax + by = gcd(a, b)的一个解
2. 算法原理——递归
3. 例题给定n对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai∗xi+bi∗yi=gcd(ai,bi)。
输入格式
第一行包含整数n。
接下来n行,每行包含两个整数ai,bi。
输出格式
输出共n行,对于每组ai,bi,求出一组满足条件的xi,yi,每组结果占一行。
本题答案不唯一,输出任意满足条件的xi,yi均可。
数据范围
1≤n≤105,
1≤ai,bi≤2∗109
输入样例:
2
4 6
8 18
输出样例:
-1 1
-2 1
#include<iostream>
#include<algorithm>
using namespace std;
int exgcd(int a, int b, int &x, int &y)
{
if(!b)
{
x = 1;
y = 0;
return a;
}
int d = exgcd(b, a % b, y, x); //一直递归到b为0
y = y - a / b * x; //开始回调时,x中的值既是所求值,只用递归求y的值,注意x,y是相反的
return d;
}
int main()
{
int n;
scanf("%d", &n);
while(n--)
{
int a, b, x, y;
scanf("%d%d", &a, &b);
exgcd(a, b, x, y);
printf("%d %d\n", x, y);
}
return 0;
}
4. 例题2: 线性同余方程
给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。
输入格式
第一行包含整数n。
接下来n行,每行包含一组数据ai,bi,mi。
输出格式
输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。
每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。
输出答案必须在int范围之内。
数据范围
1≤n≤105,
1≤ai,bi,mi≤2∗109
输入样例:
2
2 3 6
4 3 5
输出样例:
impossible
7
#include<iostream>
#include<algorithm>
using namespace std;
int exgcd(int a, int b, int x, int y)
{
if(!b)
{
x = 1;
y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y = y - a / b * x;
return d;
}
int main()
{
int n;
scanf("%d", &n);
while(n--)
{
int a, b, m;
cin >> a >> b >> m;
int x, y;
int d = exgcd(a, m, x, y);
if(b % d) printf("impossible\n");
else printf("%d\n", (LL) x * (b / d) % m);
}
return 0;
}