数学知识——扩展欧几里得算法

1. 用途
由裴蜀定理知:给予二整数 a 与 b, 必存在有整数 x 与 y 使得ax + by = gcd(a,b), 扩展欧几里得算法可以计算出ax + by = gcd(a, b)的一个解

2. 算法原理——递归
在这里插入图片描述
3. 例题给定n对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai∗xi+bi∗yi=gcd(ai,bi)。

输入格式
第一行包含整数n。
接下来n行,每行包含两个整数ai,bi

输出格式
输出共n行,对于每组ai,bi,求出一组满足条件的xi,yi,每组结果占一行。
本题答案不唯一,输出任意满足条件的xi,yi均可。

数据范围
1≤n≤105,
1≤ai,bi≤2∗109
输入样例:
2
4 6
8 18
输出样例:
-1 1
-2 1

#include<iostream>
#include<algorithm>

using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
	if(!b)
	{
		x = 1;
		y = 0;
		return a;
	}

	int d = exgcd(b, a % b, y, x);	//一直递归到b为0
	y = y - a / b * x;	//开始回调时,x中的值既是所求值,只用递归求y的值,注意x,y是相反的
	return d;
}

int main()
{
	int n;
	scanf("%d", &n);
	
	while(n--)
	{
		int a, b, x, y;
		scanf("%d%d", &a, &b);

		exgcd(a, b, x, y);
		printf("%d %d\n", x, y);
	}
	return 0;
}		

4. 例题2: 线性同余方程
给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。

输入格式
第一行包含整数n。
接下来n行,每行包含一组数据ai,bi,mi

输出格式
输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。
每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。
输出答案必须在int范围之内。

数据范围
1≤n≤105,
1≤ai,bi,mi≤2∗109
输入样例:
2
2 3 6
4 3 5
输出样例:
impossible
7

#include<iostream>
#include<algorithm>

using namespace std;

int exgcd(int a, int b, int x, int y)
{
	if(!b)
	{
		x = 1;
		y = 0;
		return a;
	}

	int d = exgcd(b, a % b, y, x);
	y = y - a / b * x;
	return d;
}

int main()
{
	int n;
	scanf("%d", &n);

	while(n--)
	{
		int a, b, m;
		cin >> a >> b >> m;
		int x, y;
		int d = exgcd(a, m, x, y);
		if(b % d) printf("impossible\n");
		else printf("%d\n", (LL) x * (b / d) % m);
	}
	return 0;
}		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值