计数类DP状态函数的值是集合中元素的个数
1. 例题:整数划分
一个正整数n可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中n1≥n2≥…≥nk,k≥1。
我们将这样的一种表示称为正整数n的一种划分。
现在给定一个正整数n,请你求出n共有多少种不同的划分方法。
输入格式
共一行,包含一个整数n。
输出格式
共一行,包含一个整数,表示总划分数量。
由于答案可能很大,输出结果请对109+7取模。
数据范围
1≤n≤1000
输入样例:
5
输出样例:
7
解题思路:用完全背包的类似思路
1)确定状态函数:f[i][j] 表示从1~ i个数中选任意个数,和值为j的所有组合。f[i][j] = 集合中元素的个数。
2)确定状态转移方程:根据第i个数选择的个数划分集合,与完全背包相同的优化后得f[i][j] = f[i-1][j] + f[i-1][j-i] 最后专化为一维。
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010, MOD = 1e9 + 7;
int n;
int f[N];
int main()
{
cin >> n;
f[0] 1;
for(int i = 1; i <= n; i ++)
for(int j = i; j <= n; j++)
f[j] = (f[j] + f[j-i]) % MOD;
printf("%d", f[n]);
return 0;
}
解法二:根据一个解中的最小数划分集合
1)确定状态函数:f[i][j] 表示j个数的和为i的集合的数量
2)确定状态转移方程:f[i][j] = f[i-1][j-1] + f[i-j][j]
把集合划分为解的最小值大一1和解的最小值是1两类,如果解的最小值是1,则此时j-1个数的和为i-1的集合的数量等于f[i][j]。如果解的最小值大于1,则此时把解的j个数全部减1就有f[i][j] = f[i-j][j]。
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010, MOD = 1e9 + 7;
int n;
int f[N][N];
int main()
{
cin >> n;
f[0][0] = 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)
f[i][j] = (f[i-1][j-1] + f[i-j][j])%MOD;
int ans = 0;
for(int i = 1; i <= n; i ++) ans = (ans + f[n][i]) % MOD;
printf("%d", ans);
return 0;
}