一、状态压缩DP概念
状态压缩DP是用二进制数表示一个集合(即状态),然后进行状态转移
- 例题:蒙德里安的梦想
求把N* M的棋盘分割成若干个1*2的的长方形,有多少种方案。
例如当N=2,M=4时,共有5种方案。当N=2,M=3时,共有3种方案。
如下图所示:
输入格式
输入包含多组测试用例。
每组测试用例占一行,包含两个整数N和M。
当输入用例N=0,M=0时,表示输入终止,且该用例无需处理。
输出格式
每个测试用例输出一个结果,每个结果占一行。
数据范围
1≤N,M≤11
输入样例:
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
输出样例:
1
0
1
2
3
5
144
51205
解题思路:
因为当所有的横向的木块确定了之后,所有纵向的木块也随之确定了。所以只需要找到所有横向摆放木块的总数量就可以得到答案。按列从前往后枚举每一列横放木块的状态。
用一个二进制数对应位上是0还是1表示该空格是空还是填 了木块。
1)确定状态函数:f[i][j] 表示在前i-1列都摆好确定之后,第i列的状态是j时的方案数。
2)确定状态转移方程:第i列的状态由第i-1的状态转移而来,所以枚举第i-1列的所有状态数f[i-1][k] 判断该状态是否可以转移到f[i][j](可以转移需要两个条件:第i列的j状态可以在i-1的k状态下摆放,即(j & k) == 0 ;摆放后第i-1列要合法,即空格数为偶数),如果可以就把f[i-1][k]累加到f[i][j]。状态转移方程;f[i][j] += f[i-1][k]
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 12, M = 1<<N;
int n, m;
long long f[N][M];
bool st[M];
int main()
{
while(cin >> n >> m && n || m)
{
memset(f, 0, sizeof(f));
// 预处理该列能够表示的二进制数是否合法
for(int i = 0; i < 1 << n; i++)
{
st[i] = true;
int cnt = 0;
for(int j = 0; j < n; j++)
if(i >> j & 1)
{
if(cnt & 1) st[i] = false;
cnt = 0;
}
else cnt ++;
if(cnt & 1) st[i] = false;
}
f[0][0] = 1;
for(int i = 1; i <= m; i++)
for(int j = 0; j < 1 << n; j++)
for(int k = 0; k < 1 << n; k++)
if((j & k) == 0 && st[k | j]) //判断是否满足两个条件
f[i][j] += f[i-1][k];
cout << f[m][0] << endl;
}
return 0;
}
- 例题2 :最短Hamilton路径
给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
输出一个整数,表示最短Hamilton路径的长度。
数据范围
1≤n≤20
0≤a[i,j]≤107
输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 21, M = 1 << N;
int n;
int w[N][N];
int f[M][N];
int main()
{
cin >> n;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j ++)
cin >> w[i][j];
memset(f, 0x3f, sizeof(f));
f[1][0] = 0;
for(int i = 0; i < 1<<n; i++)
for(int j = 0; j < n; j++)
if(i >> j & 1)
for(int k = 0; k < n; k++)
if(i - (1 << j) >> k & 1)
f[i][j] = min(f[i][j], f[i-(1<<j)][k] + w[k][j]);
cout << f[(1 << n) - 1][n-1] << endl;
return 0;
}