用 Unsloth 微调 LLaMA 3 8B

5 篇文章 0 订阅
2 篇文章 0 订阅

用 Unsloth 微调 LLaMA 3 8B

今年4月份,Meta 公司发布了功能强大的大型语言模型(LLM)Llama-3,为从事各种 NLP 任务的开发人员提供了功能强大可以在普通机器上运行的开源LLM。然而,传统的 LLM 微调过程既耗时又耗费资源。但是,Unsloth 的出现改变了这一局面,大大加快了 Llama-3 的微调速度。

本文将探讨 Unsloth 如何帮助您以极高的速度和效率,根据具体需求对 Llama-3 进行微调。我们将深入探讨 Unsloth 的优势,并提供 Llama-3 微调流程的流程指南。

名词解释

  • 什么是Unsloth
    Unsloth 是一个功能强大的库,旨在加速大型语言模型 (LLM) 的微调,同时减少内存使用。它由 Daniel 和 Michael Han 创建,通过优化反向传播和将 PyTorch 模块重写为 Triton 内核,训练速度提高了 30 倍,内存消耗降低了 60-80%。Unsloth 支持广泛的 NVIDIA GPU,与 Hugging Face 生态系统无缝集成,使其与 LLaMA 和 Mistral 等各种 LLM 架构兼容。值得注意的是,与传统方法相比,它在准确度方面保持了 0% 的下降,为微调 LLM 提供了有效的解决方案。
  • Llama-3
    Llama-3是Meta公司开发的一款开源大语言模型,是Llama系列的最新版本。它提供了两个版本:8B版本适用于消费级GPU上的高效部署和开发,70B版本则专为大规模AI应用设计。每个版本都包括基础和指令调优两种形式。
  • Ollama
    Ollama 是一款能让用户在本地机器上运行开放式 LLM 的工具,无需云服务。它是 llama.cpp 的前端,可以加载 GGUF 模型。该工具设计简单易用,提供了简单的 API、OpenAI 端点兼容性(例如可与任何支持 OpenAI 规范的模型都可以使用)。Ollama 可在 macOS、Linux 和 Windows 上运行,可使用 CPU 和 GPU,并与 LangChain、LiteLLM 等流行框架无缝集成。通过提供本地执行,Ollama 可以确保数据隐私并减少延迟,是希望高效利用高级 NLP 功能的开发人员和研究人员的理想选择。

为什么要使用 Unsloth 对 Llama-3 进行微调?

Unsloth 为微调 Llama-3 这样的大型模型提供了非常棒的解决方案。有如下几个原因:

  • 速度提升:与传统方法相比,Unsloth 可显著提高速度,将训练时间最多缩短 5 倍。这样就可以更快地进行实验,更快地优化微调模型。
  • 减少内存占用:Unsloth 在提高运行速度的同时,最大限度地减少了内存占用。这对于占用大量内存的 Llama-3 尤为有利。Unsloth 可以让你在性能较弱的硬件上进行训练,使 LLM 微调更容易实现。
  • 提升训练精度:Unsloth 可以同时提高准确性与速度。与某些优化技术不同,Unsloth 采用精确计算方法,确保经过微调的 Llama-3 模型与经过传统训练的模型性能相当。

使用 Unsloth 微调 Llama-3 的指南

  1. 安装 Unsloth:
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
    # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
    !pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
    # Use this for older GPUs (V100, Tesla T4, RTX 20xx)
    !pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
 
  1. 导入必要的库
from unsloth import FastLanguageModel
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import TrainingArguments
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
  1. 加载 Llama-3 模型和分词器:
max_seq_length = 2048

#unsloth support llama-3 by default, you can also use any model available on huggingface 
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/llama-3-8b-bnb-4bit",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
 
  1. 准备微调数据集:
    数据集使用[1],这是斯坦福大学发布的原始Alpaca数据集的净化版本。
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["instruction"]
    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

dataset = load_dataset("yahma/alpaca-cleaned", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,) 
  1. 定义 PEFT 配置:
    PEFT(Parameter-Efficient Fine-Tuning)是一种用于微调大型语言模型(LLM)的技术,旨在通过调整少量参数来实现高效的模型适应,而不是对整个模型进行全面微调。这样的方法在保持模型性能的同时,显著减少了计算资源和时间的消耗。
    PEFT的优势:
    1. 参数高效性:PEFT 只微调模型的一小部分参数,而不是所有参数。这显著减少了需要更新和存储的参数数量,从而降低了计算和内存需求。
    2. 速度和资源优化:由于只微调少量参数,训练速度更快,所需的计算资源和内存也大大减少,使得在有限资源下也能进行高效的模型微调。
    3. 迁移学习:PEFT 利用预训练模型的知识,通过微调少量参数使模型适应特定任务,从而实现高效的迁移学习。
    4. 应用广泛:PEFT 可以应用于多种大型语言模型和任务,包括文本分类、生成、翻译等。
model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
) 
  1. 配置 Unsloth Trainer:
trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        warmup_steps = 5,
        max_steps = 60,
        learning_rate = 2e-4,
        fp16 = not torch.cuda.is_bf16_supported(),
        bf16 = torch.cuda.is_bf16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
    ),
) 
  1. 查询内存使用情况:
#Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.") 
  1. 训练经过微调的 Llama-3 模型:
 trainer_stats = trainer.train()
 
  1. 使用微调模型进行推理:
 # alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Continue the fibonnaci sequence.", # instruction
        "1, 1, 2, 3, 5, 8", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
  1. 使用 Hugging Face Transformers 微调模型进行推理:
    model = AutoPeftModelForCausalLM.from_pretrained(
        "lora_model", # YOUR MODEL YOU USED FOR TRAINING
        load_in_4bit = load_in_4bit,
    )
    tokenizer = AutoTokenizer.from_pretrained("lora_model") 
  1. 保存模型:
    要将最终模型保存为 LoRA 适配器,可使用 Huggingface 的 push_to_hub 进行在线保存,或使用 save_pretrained 进行本地保存。
#[NOTE] This ONLY saves the LoRA adapters, and not the full model.
model.save_pretrained("lora_model") # Local saving
# model.push_to_hub("your_name/lora_model", token = "...") # Online saving 
  1. 将模型保存为 16 位或 GGUF:
    GGUF(即通用图形通用格式)是一种文件格式,旨在提高部署 LLM(如 LLaMA-3 8B)的效率和灵活性。 GGUF 由 llama.cpp 团队推出,对其前身 GGML、单文件部署、可扩展性和内存映射进行了改进,以实现更快的模型加载。这种格式特别适合量化模型,可以在不影响性能的情况下减少计算资源需求。对于希望简化跨各种平台(包括 CPU 和 Apple 设备)的 LLM 部署和推理的开发人员来说,GGUF 是理想的选择。[2]
# Save to 8bit Q8_0
# Fast conversion. High resource use, but generally acceptable.
if False: model.save_pretrained_gguf("model", tokenizer,)
if False: model.push_to_hub_gguf("hf/model", tokenizer, token = "")

# Save to 16bit GGUF
# 
if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "")

# Save to q4_k_m GGUF
#q4_k_m - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.
# model-unsloth-Q4_K_M.gguf
if True: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "q4_k_m", token = "")
 
  1. 使用ollama运行训练后的模型:
    在 Ollama 中加载 GGUF 时,需要自定义一个带有系统信息和模板的 Modelfile,记住要将 GGUF 文件替换为您正在使用的量化级别,这里我们使用的是 model-unsloth-Q4_K_M.gguf,您可以在导入 Ollama 时将其命名为任何您想要的名称:
 ollama create llama3:8b-instruct-q4_K_M -f Modelfile  ollama run llama3:8b-instruct-q4_K_M
 

结论

Unsloth 为像 -Llama-3 这样功能强大的 LLM 的高效微调打开了大门。凭借其速度和内存优化能力,Unsloth 可帮助开发人员探索各种 NLP 应用,加速该领域的创新!

参考

[1]https://huggingface.co/datasets/yahma/alpaca-cleaned

[2]https://huggingface.co/docs/hub/en/gguf

[unsloth]跳转中...

  • 30
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Llama3-8b是一个开源的聊天机器人模型,可以用于自然语言处理和对话生成任务。如果您希望进行私有化部署,可以按照以下步骤进行操作: 1. 获取源代码:首先,您需要从Llama3-8b的开源代码库中获取源代码。您可以在GitHub上找到该项目,并将其克隆到本地。 2. 环境配置:在进行私有化部署之前,您需要配置适当的环境。确保您的系统满足所需的软件和硬件要求,并安装必要的依赖项。 3. 数据准备:为了训练和使用Llama3-8b模型,您需要准备相应的数据集。这可能包括对话数据、语料库等。确保数据集的质量和多样性,以提高模型的性能。 4. 模型训练:使用准备好的数据集,您可以开始训练Llama3-8b模型。根据您的需求和资源情况,您可以选择在单个GPU或多个GPU上进行训练。训练过程可能需要一定的时间和计算资源。 5. 模型部署:一旦训练完成,您可以将Llama3-8b模型部署到私有环境中。这可能涉及将模型加载到服务器或云平台,并设置相应的API接口供其他应用程序调用。 6. 安全性和隐私保护:在进行私有化部署时,确保采取适当的安全措施来保护用户数据和系统安全。这可能包括数据加密、访问控制、身份验证等。 7. 持续优化和更新:私有化部署后,您可以根据实际需求对Llama3-8b模型进行持续优化和更新。这可能包括增加新的训练数据、微调模型参数等。 希望以上步骤对您进行Llama3-8b的私有化部署提供了一些指导。如果您有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liugddx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值