LlamaIndex 或 LangChain,哪个更适合作为RAG框架?

LlamaIndex VS LangChain,全方位比较这两个框架

大语言模型(LLMs)是当今时代最顶尖的AI技术之一。早在2022年11月,OpenAI发布了自己的生成式AI聊天机器人,这在当时引起了极大的轰动,大家纷纷讨论这种尖端技术的应用。在见识到ChatGPT的奇迹之后,企业、开发者和个人都想要拥有自己的定制版ChatGPT。这导致了对开发、集成和管理生成式AI模型的工具/框架需求激增。

由于市场上存在这样的缺口,有两个突出的框架正引领潮流:LlamaIndex和LangChain。然而,这两个框架的目标都是帮助开发者创建自己的定制大语言模型(LLM)应用程序。每个框架都有其自身的优点和缺点。本文的目的是揭示LlamaIndex和LangChain之间的关键区别,以帮助你为你的具体使用场景选择合适的框架。

LlamaIndex简介

LlamaIndex 是一个框架,旨在基于自定义数据对大语言模型(LLMs)进行索引和查询。它能够通过多种数据源连接数据,如结构化数据(例如关系数据库)、非结构化数据(例如NoSQL数据库)和半结构化数据(例如Elasticsearch数据库)。

虽然你的数据是专有的,但可以将其索引为嵌入向量,这些向量在大规模上对最先进的LLMs而言是可以理解的,从而消除了重新训练模型的需求。

LlamaIndex 工作原理

LlamaIndex 促进了LLMs的下一级定制化。它将你的专有数据嵌入到内存中,使模型在给出基于上下文的响应时逐渐变得更好。LlamaIndex 将大语言模型转变为领域知识专家;它可以作为AI助手或对话机器人,基于一个真实来源(例如包含业务特定信息的PDF文档)回答你的查询。

为了基于专有数据定制LLMs,LlamaIndex 使用了一种称为检索增强生成(RAG)的技术。RAG主要包括两个关键阶段:

  1. 索引阶段:专有数据被有效地转换为向量索引。在索引阶段,数据被转换为具有语义意义的向量嵌入或数值表示。
  2. 查询阶段:在这个阶段,每当系统被查询时,语义相似度最高的查询将以信息块的形式返回。这些信息块与原始查询提示一起被发送到LLM以获得最终响应。借助这种机制,RAG可以生成高度准确且相关的输出,而这些输出是LLMs的基础知识无法实现的。

LlamaIndex 入门

首先,开始安装 llama-index:

pip install llama-index 

设置openai的密钥:

import os
os.environ["
### 使用 LlamaIndex 实现 RAG 的代码示例 LlamaIndex 是一种用于实现检索增强生成(RAG)的技术框架,它通过结合强大的索引能力和大型语言模型(LLMs),使得复杂查询的处理加高效和精准。下面提供了一个简单的 Python 代码片段,展示了如何使用 LlamaIndex 来创建一个基于 RAG 的问答应用。 ```python from llama_index import SimpleDirectoryReader, GPTListIndex, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def construct_index(directory_path: str) -> None: max_input_size = 4096 num_outputs = 512 chunk_overlap_ratio = 0.1 chunk_size_limit = 600 prompt_helper = PromptHelper(max_input_size=max_input_size, num_output=num_outputs, max_chunk_overlap_ratio=chunk_overlap_ratio, chunk_size_limit=chunk_size_limit) llm_predictor = LLMPredictor(llm=BaseLLM()) # 这里应该替换为你自己的 LLM 模型实例 service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, prompt_helper=prompt_helper) documents = SimpleDirectoryReader(input_dir=directory_path).load_data() index = GPTListIndex(documents, service_context=service_context) index.save_to_disk('index.json') def ask_ai(query: str) -> str: index = GPTListIndex.load_from_disk('index.json') response = index.query(query) return response.response ``` 这段代码首先定义了 `construct_index` 函数用来建立文档索引,并保存到本地文件;接着实现了 `ask_ai` 方法接收用户的提问并返回由 LlamaIndex 处理后的答案[^1]。 为了好地理解上述过程以及进一步探索 LlamaIndexRAG 技术的应用场景,推荐深入研究官方文档和其他相关资料[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liugddx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值