本文是对《Max-Margin DeepWalk:Discriminative Learning of Network Representation》一文的浅显翻译与理解,如有侵权即刻删除。
朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~
Chinese-Reading-Notes-of-Graph-Learning
更多相关文章,请移步:文献阅读总结:网络表示学习/图学习
Title
《Max-Margin DeepWalk:Discriminative Learning of Network Representation》
——IJCAI 2016
Author: 涂存超
总结
文章认为当前的网络表示算法不能够起到很好地分类效果,提出了MMDW算法。该算法学习矩阵分解形式的Deepwalk损失函数,并训练一个基于支持向量机的最大间隔分类器,将两者的损失函数结合起来,并采用控制变量的方法分别进行优化,最终能够学习得到有明显区分的网络表示。
1 问题定义
2 矩阵分解形式的Deepwalk
DeepWalk会在网络中进行随机游走得到节点的随机游走序列,并采用Skip-Gram模型来学习节点表示。
在这种情况下,Deepwalk的损失函数形式如下:
其中,S是所有随机游走序列的集合,概率Pr可计算如下:
其中x表示节点向量。Network representation learning with rich text information 一文认为,DeepWalk 等价于对一个矩阵M进行矩阵分解,矩阵中的每一个元素为:
文章在此取了M的近似矩阵,即t仅取到2。并利用M=X^(T)Y对Deepwalk进行矩阵分解,从而有目标函数如下:
3 最大间隔分类器
文章基于支持向量机SVM训练了一个最大间隔分类器,假设训练集为:
则有该分类器的目标函数为:
式5中,前一项W为SVM的权重矩阵,后一项为控制训练集中分类错误的松弛变量。松弛变量的引入常常是为了便于在更大的可行域内求解。若为0,则收敛到原有状态,若大于零,则约束松弛。
4 MMDW
文章将上述两个目标函数进行结合同时优化,则有新的目标函数为:
该目标函数中有四个训练参数,即节点表示矩阵X,上下文表示矩阵Y,分类权重矩阵W以及松弛向量。文章采用控制变量的方法,分别对目标函数进行优化。
4.1 优化分类器部分
当固定X和Y时,对于MMDW的优化变成一个标准的多类别SVM问题,其对偶形式如下:
在此,拉格朗日乘子a替代为了C-z。为求解该对偶问题,文章使用坐标下降方法,将Z拆分成多个向量z,并采用序列对偶方法来解决其对应的子问题,有:
4.2 优化Deepwalk部分
当权重矩阵和松弛向量固定时,目标函数可视为求解带约束的矩阵分解问题,有:
截图中的中文内容出自文章作者涂存超的博士毕业论文。