文献阅读(27)DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks

本文是对《DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks》一文的浅显翻译与理解,如有侵权即刻删除。

朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~

Chinese-Reading-Notes-of-Graph-Learning

更多相关文章,请移步:文献阅读总结:网络表示学习/图学习

Title

《DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks》

——WSDM2020

Author: Aravind Sankar

总结

文章提出了DySAT算法,主要分为三个模块:结构自注意力层,时间自注意力层,图环境预测。算法在每个静态快照上学习结构嵌入,在多个静态快照上学习时间嵌入,并最终通过损失函数完成对图环境的预测。此外,文章在两个层上使用了多头注意力机制,以避免预测误差,最终的实验全部围绕link prediction这一任务展开,猜想是对应了对图环境的预测。

1 结构自注意力层

该层输入为一个静态快照对应的邻接矩阵,以及节点的one-hot向量。通过注意力机制的加权,将节点的直接邻居嵌入进行聚合。
在这里插入图片描述

2 时间自注意力层

该层输入为从上层学得的节点嵌入,并与关于时间的位置编码结合,最终形成了输入的节点嵌入,即:
在这里插入图片描述
其中h即为上层生成的z,p为关于时间的位置编码,因为该层是在多个静态快照上进行的聚合。
在这里插入图片描述
在进行时间层面的嵌入聚合时,应当注意算法通过M来控制时间范围。即给定一个当前时间j,只有比j时间早的嵌入能够被聚合,此时M为0,否则当时间比j晚,即还没有发生时,M为负无穷,从而该时间段的exp化无线趋近0.不对注意力权重产生影响。

3 多头注意力机制

多头注意力可简单理解为,设置多个权重矩阵,对上述的计算执行多次,并将结果以某种方式结合。算法在两个层上都执行了该机制,形式如下:
在这里插入图片描述

4 图环境预测(损失函数)

给出固定长度的随机游走,损失函数鼓励出现在同一游走中的节点具有相似的嵌入:
在这里插入图片描述

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值