Python爬虫讲解(超详细)

Python爬虫通过模拟浏览器行为,访问网站获取数据。常用流程包括发送HTTP请求、解析HTML、数据清洗和存储。文中提到了requests和BeautifulSoup库的作用,还介绍了Scrapy和Selenium等工具,并强调了爬虫使用时需遵循的规则,如尊重网站权益、避免频繁请求。此外,给出了从新闻网站和淘宝网爬取信息的简单代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python爬虫是一种通过编写程序自动从互联网上获取数据的技术。下面是Python爬虫的详解:

爬虫的基本原理

    爬虫的基本原理是**通过模拟浏览器的行为**,访问目标网站,并获取目标页面中的数据。Python爬虫可以使用requests库来发送HTTP请求,使用BeautifulSoup库或正则表达式等工具来解析HTML、XML等格式的文档,在提取所需数据时结合相关Python库和算法进行数据清洗、存储、分析等操作。

常见爬虫流程

(1)发送HTTP请求

通过Python的requests库发送HTTP请求,并设置请求头部信息,模拟用户访问目标页面的行为。

(2)解析HTML文档

使用BeautifulSoup或者其他解析库对HTML文档进行解析,获取目标数据。

(3)数据清洗

通常情况下,爬取的数据存在一定的杂乱和错误,需要进行数据清洗,保证数据质量。

(4)存储数据

爬取到的数据需要存储在本地或者数据库中,方便后续进行数据分析、处理等操作。

Python爬虫常用库介绍

(1)Requests:一个Python第三方库,可以处理HTTP请求和响应。

(2)BeautifulSoup:一个Python的HTML/XML解析器库,可以快速解析页面中的元素。

(3)Scrapy:一个Python爬虫框架,具有高效、快速的爬取速度、数据处理和管理等特点。

(4)Selenium:一个自动化测试工具,可以模拟用户操作浏览器来访问网站并获取所需数据。

Python爬虫注意事项

在使用Python爬虫时,需要遵守下列规则:

(1)尊重网站所有者的权益,不要对目标站点进行恶意攻击或破坏;

(2)爬取的数据不得用于商业目的,且必须说明数据来源,并保证不会泄露用户隐私信息;

(3)避免频繁地发送请求,否则可能被服务器判定为恶意攻击,并被禁止访问。可以通过设置合理的请求头、请求频率和使用IP池等方式降低风险。

总之,Python爬虫是一种非常有用和强大的技术工具,但在使用过程中需要遵守相关规则和法律法规。

举个python 的例子

   1: 一个简单的Python爬虫例子就是**从网站上爬取新闻标题以及发布日期等信息**。以下是一个基本的代码示例:  

import requests
from bs4 import BeautifulSoup

url = 'http://news.sina.com.cn/'
req = requests.get(url)
soup = BeautifulSoup(req.text, 'html.parser')

for news in soup.select('.news-item'):
    title = news.select('a')[0].text
    date = news.select('.time')[0].text
    print('标题:', title)
    print('日期:', date)
    此段代码使用Python中的requests请求库和BeautifulSoup解析库,将新浪新闻首页的HTML文档下载并解析。然后通过CSS选择器选取新闻条目,并从中提取标题和日期信息。最后,将结果打印出来。这个例子是一个非常基础的Python爬虫例子,可以根据需要进行扩展和改进。  


    2:Python爬虫例子是从淘宝网上爬取商品信息,例如商品名称、价格、销量和评价等。以下是一个基本的代码示例:

import requests
from bs4 import BeautifulSoup

url = 'https://s.taobao.com/search?q=python编程书'
params = {
    'imgfile': '',
    'js': '1',
    'q': 'python编程书',
    'stats_clicksearch': '1',
    'initiative_id': 'staobaoz_20220901',
}

resp = requests.get(url, params=params)
soup = BeautifulSoup(resp.text, 'html.parser')

# 找到所有商品列表
items = soup.find_all('div', {'class': 'item J_MouserOnverReq  ')

for item in items:
    # 获取商品名
    title = item.find('div', {'class': 'title'}).text.strip()

    # 获取价格
    price = item.find('strong').text

    # 获取销量
    sales = item.find('div', {'class': 'deal-cnt'}).text.replace('笔', '')

    # 获取评价数量
    comment = item.find('div', {'class': 'star'}).find_all('span')[3].text[:-1]

    print('【名称】:{}, 【价格】:{}, 【销量】:{}, 【评价】:{}'.format(title, price, sales, comment))
    此段代码使用Python中的requests请求库和BeautifulSoup解析库,通过向淘宝发送带有查询关键字的HTTP GET请求,并传递查询参数,然后获取返回的HTML页面。 然后根据CSS类选择器选取商品信息,包括商品名称、价格、销量和评价等,并打印出来。需要注意的是,网站反爬虫机制会阻止Python爬虫获得完整页面,因此可能需要实现动态IP代理池、随机请求头等功能来绕过验证。

-END-


学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、自动化测试带你从零基础系统性的学好Python!

👉[CSDN大礼包:《python安装工具&全套学习资料》免费分享]安全链接,放心点击

👉Python学习大礼包👈

在这里插入图片描述

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python书籍和视频合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

👉Python面试刷题👈

👉Python副业兼职路线👈

在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以点击链接免费领取或者保存图片到wx扫描二v码免费领取保证100%免费

👉[CSDN大礼包:《python安装工具&全套学习资料》免费分享]安全链接,放心点击

Python爬虫是一种用于从网页上获取数据的技术。下面我将为您详细讲解如何使用Python进行爬虫。 第一步是安装Python和所需的库。您可以从Python官方网站下载并安装Python。常用的爬虫库包括BeautifulSoup、Requests和Scrapy。您可以使用pip命令来安装这些库,例如:pip install beautifulsoup4。 第二步是了解网页结构。在进行爬虫之前,您需要了解要爬取的网页的结构。可以通过查看网页源代码或使用开发者工具来查看网页元素和数据。 第三步是发送HTTP请求并获取网页内容。您可以使用Requests库来发送HTTP请求,并获取网页的HTML内容。示例代码如下: ```python import requests url = "https://www.example.com" response = requests.get(url) html_content = response.text ``` 第四步是使用BeautifulSoup库解析网页内容。BeautifulSoup库可以帮助您从HTML文档中提取所需的信息。示例代码如下: ```python from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, "html.parser") # 在这里使用BeautifulSoup提取所需的信息 ``` 第五步是处理提取到的数据。您可以根据需要对提取到的数据进行处理,例如保存到文件、存入数据库或进行进一步分析。 最后一步是设置爬虫的限制。在进行爬虫时,需要注意遵守网站的爬虫规则,如设置适当的请求频率、使用合适的User-Agent等。 以上就是Python爬虫的基本步骤和简要介绍。希望对您有所帮助!如果您有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值