在最近的十多年间,人工智能已经历了两轮风格迥异的发展热潮,如今正踏入第三次热潮。每一次都是对前一阶段能力局限性的突破。
第一轮热潮:传统机器学习
传统机器学习(ML)专注于特定的预测任务,如分类、回归、聚类等。
构建诸如支持向量机(SVM)、随机森林等模型,需要深厚且广泛的专业知识储备。这是由于它们并非通用型模型,而是针对单个用例,历经大量的研究、实验与调试,精心设计而成。
以SVM为例,其通过寻找一个最优超平面来实现数据分类,这个超平面要使不同类别的样本间隔最大化,涉及到复杂的数学原理和算法调优;随机森林则是基于多个决策树的集成学习方法,需合理设置决策树数量、特征选择方式等诸多参数,过程极为复杂。这类模型的领域特定性,深深嵌入其训练数据当中。它们在构建时,训练数据往往来自特定领域,数据的特征、分布及所反映的规律,均围绕该领域的问题与需求。
若要让这些模型适应全新的领域,通常意味着要推倒重来。需要重新收集、整理和标注新领域的数据,依据新数据的特点重新设计模型架构、调整参数设置,再进行大量的训练与优化。这种方式缺乏可扩展性,在时间、人力和计算资源等方面都面临巨大挑战,严重阻碍了模型在不同领域的快速应用,也限制了其在更广泛场景下发挥作用。
第二轮热潮:AIGC
这一轮热潮以深度学习为驱动力,堪称AI发展进程中的关键转折点。AI模型依托海量且多样的数据集展开训练,从互联网上浩如烟海的文本、图像、视频等各类数据中汲取养分,进而具备了强大的泛化能力,得以在纷繁复杂、截然不同的情境中灵活运用。
然而,一方面生成式模型存在时间维度上的固有缺陷,其训练基于特定时间段内的数据,一旦完成训练,便难以纳入新的或动态变化的信息。同时,这类模型在适应性调整方面困难重重。虽然微调技术能够在一定程度上让模型契合特定领域需求,可微调需要海量且高质量的数据作为支撑,要耗费巨大的计算资源以驱动复杂的运算过程,还要求专业人员具备深厚的机器学习知识储备,方能精准调整模型参数。
另一方面,大语言模型多在公开可得的数据上完成训练,不包含特定领域的专属信息。当面对需要背景信息支撑才能准确作答的问题时,其局限性便暴露无遗。假设用户要求大语言模型依据个人健康史、所在位置以及财务目标,推荐一份量身定制的保险单。由于模型无法获取用户的这些专属私密数据,它给出的回复要么是放之四海而皆准的宽泛建议,缺乏针对性;要么因信息缺失导致完全错误,难以切实满足用户的个性化需求,在实际应用中显得捉襟见肘 。
为有效突破既有局限,**检索增强生成(RAG)**技术得到广泛运用。RAG技术的核心运作机制,是将动态的相关数据巧妙融入模型工作流程。以医疗领域为例,在处理患者病症诊断时,RAG技术能实时从海量医疗文献、病例数据库中提取相关信息,辅助模型给出更精准的诊断建议,成功弥补了传统静态模型与复杂多变的现实世界需求间的鸿沟。
尽管RAG在应对诸多任务时成效显著,但其自身架构存在固有短板。它依赖固定的工作流程,意味着每一次人机交互过程以及模型的执行路径,都必须提前设定妥当。在一些相对常规、模式固定的任务场景中,如简单的客服问答,这种方式尚能够满足需求。一旦涉及更为复杂或动态变化的任务,其弊端便暴露无遗。以金融市场投资策略制定为例,市场行情瞬息万变,影响因素错综复杂,包括宏观经济数据发布、国际政治局势变动、行业突发新闻等,这些因素难以预先详尽编码到模型的执行路径中。若要手动将所有可能的市场变化情况及其应对策略编码到模型里,不仅需要投入海量的人力、时间成本,而且从实际操作角度来看,由于市场的无限复杂性,最终也难以穷举所有可能性,效果极为有限 。
正是由于固定流程架构的这些难以克服的局限性,推动了人工智能第三波浪潮的兴起,智能体系统由此登上舞台。
第三轮热潮:智能体
尽管人工智能已取得显著进展,但我们正面临大语言模型的局限性难题。有报道指出,即便谷歌的Gemini模型基于大规模数据集训练,其表现仍未达内部预期,这似乎暗示着我们正在逼近大语言模型的能力极限。
智能体(AI agent)带来了新的生机,其工作流程由动态情境驱动。与按部就班的固定路径不同,智能体系统可依据当下状况,即时规划下一步行动。这一特性,使其能精准应对企业当前面临的各类复杂、多变且相互交织的难题。
智能体彻底革新了传统控制逻辑。它摒弃了依靠死板程序决定每个动作的模式,借助大语言模型(LLMs)驱动决策。智能体能够实时推理、灵活运用工具并调用记忆。这种灵活性让工作流程实时演变,使智能体比基于固定逻辑构建的系统强大得多 。
常见的智能体设计模式
接下来,将为你呈现一些常见且行之有效的设计模式,正是它们支撑着智能体在各类场景中高效运转。
1.自我反思(self-reflection)
智能体的自我反思功能使其能够在采取行动或给出最终回复之前,对自身的决策进行评估并优化输出结果。凭借这种能力,智能体能够发现并纠正错误,完善推理过程,从而确保获得更高质量的结果。
2.工具调用
智能体与外部工具交互,极大拓展了自身功能,得以开展检索数据、自动化流程操作或执行确定性工作流等任务。这在对准确性要求极高的场景中价值凸显,像数学计算、数据库查询这类操作,精准度可谓重中之重。借助工具,智能体实现了灵活决策与可预测、可靠执行的有效衔接。
3.规划
具备规划能力的智能体可将宏观目标细化为具体可操作步骤,并依据逻辑关联合理安排任务顺序。面对需要多步推进的复杂问题,或者任务间存在紧密依赖关系的工作流程时,这种设计模式优势尽显。它能像经验丰富的指挥官,有条不紊地排兵布阵,确保每个环节都能有序衔接,推动任务逐步达成,在提升问题解决效率与质量上发挥着关键作用 。
4.多智能体协作
多智能体系统在解决问题时采用模块化思路,将特定任务精准委派给专业智能体。这种方式优势显著,比如针对特定任务的智能体,运用较小的语言模型,既能提升运行效率,又能让内存管理变得轻松。从设计角度看,模块化设计让单个智能体聚焦于特定任务情境,有效降低了复杂度。举例来说,在智能物流中,路线规划智能体可专注于根据实时路况、送货点分布等信息规划最优路线,仓储管理智能体则全力负责库存盘点、货物存储位置安排等工作,各智能体各司其职,让整个物流体系运行得更加流畅高效 。
简而言之,智能体不仅仅是执行工作流程,它们还重塑了我们对工作流程的认知方式。它们是构建可扩展、适应性强的人工智能系统的下一步:超越了传统架构的限制以及当前大语言模型的局限性。
智能体驱动的检索增强生成(Agentic RAG)
智能体驱动的检索增强生成,通过赋予系统更强的动态性与上下文驱动特性,对传统检索增强生成实现了重大升级。相较于传统模式中依赖固定工作流程的弊端,智能体能够基于当下任务的具体情况,实时判断所需数据、明确数据获取来源,并对查询方式加以优化。比如在复杂的金融市场分析场景中,智能体可根据实时波动的股价、最新发布的经济政策等动态信息,迅速从新闻数据库、金融报表库等不同渠道获取数据,而非按部就班地遵循预设流程。这种高度灵活性,让智能体驱动的检索增强生成在应对复杂、多步骤工作流程时游刃有余,能够精准且高效地做出响应与调整,为解决实际问题提供更强大的支持 。
构建智能体所面临的挑战
扩展智能体,不管是单个智能体独立作业,还是多个智能体组成协作系统,关键在于能否便捷地访问与共享数据。智能体为了做出决策、采取行动,需要从多个来源收集信息,包括其他智能体的经验成果、各类工具提供的辅助数据,以及外部系统的专业资讯等。
将智能体与所需工具、数据相连,本质上属于分布式系统问题,其复杂性与设计微服务时面临的挑战相似,组件间需高效通信,避免出现瓶颈或产生僵化的依赖关系。
如同微服务,智能体必须高效通信,并确保输出能在更广泛系统中发挥作用。而且,智能体输出不应仅反馈至人工智能应用,还应流向数据仓库、客户关系管理系统(CRM)、客户数据平台(CDP)以及客户成功平台等关键系统。当然,利用远程过程调用(RPC)和API能连接智能体与工具,但会造成系统紧密耦合,不利于扩展、适应新需求,也难以支持同一数据的多个使用者。智能体需要灵活性,其输出应能无缝输入其他智能体、服务和平台,避免陷入僵化的依赖关系。
解决方案是什么呢?
事件驱动架构(EDA,event-driven architecture)
早期的软件系统多采用单体架构,所有功能集中于一个紧密集成的代码库。这种架构构建时简单,适合小型项目。但随着业务发展、规模扩大,弊端尽显。比如要扩展部分功能,就得扩展整个应用程序,既浪费资源又低效,导致系统臃肿、架构脆弱,难以应对业务增长。
微服务架构的出现改变了这一困境。它将应用程序拆分为小的、可独立部署的组件。团队能独立扩展和更新特定部分,而不影响整个系统。不过,这也带来新问题:众多小服务间如何高效通信?若用直接的远程过程调用(RPC)或API调用连接,服务间会形成复杂的依赖关系,一旦某个服务故障,就会波及相连的其他节点 。
事件驱动架构为解决上述难题提供了有效方案。它摒弃了紧密耦合的同步通信模式,让组件之间通过事件实现异步交互。在这种架构下,各个服务无需相互等待对方的操作完成,能够直接对实时产生的事件做出反应。例如,当系统监测到用户完成了一项购买操作,这一事件能够立刻触发库存减少、积分增加以及发送购买确认邮件等一系列后续动作,而不必像传统架构那样按部就班、依次等待各环节的响应,大大提升了系统的处理效率与灵活性 。
这种方法赋予系统更强的弹性与适应性,足以应对现代工作流程的复杂多变。这绝非普通的技术进步,而是压力之下系统得以存续的关键策略。 恰似早期社交网络迅速崛起并广泛普及,智能体也正迈向快速发展与大规模应用的阶段。但仅构建智能体远远不够,真正的难题在于,架构能否承受分布式数据、工具集成以及多智能体协作带来的复杂挑战。缺乏恰当的基础架构支撑,智能体系统就可能重蹈早期社交媒体失败者的覆辙,在复杂现实面前分崩离析 。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!