什么是ConcurrentHashMap?(jdk1.8以下版本)

想要避免HashMap的线程安全问题有很多办法,比如改用HashTable或者Collection.synchronizedMap。但是这两者有着共同的问题:性能。无论是读操作还是写操作,它们都会给整个集合加锁,导致同一时间的其他操作为之阻塞。

在并发环境下,如何能够兼顾线程安全和运行效率呢?这时候,ConcurrentHashMap就应运而生了。

掌握HashMap后,学习ConcurrentHashMap其实很简单,最关键是要理解一个概念:Segment。

---------------------------------------------------------------------------------------------------------------------------------------

Segment是什么呢?Segment本身就相当于一个HashMap对象。同HashMap一样,Segment包含一个HashEntry数组,数组中的每一个HashEntry既是一个键值对,也是一个链表的头节点。

像这样的Segment对象,在ConcurrentHashMap集合中有多少个呢?2的N次方个,共同保存在一个名为Segments的数组中。

可以说,ConcurrentHashMap是一个二级哈希表,在一个总的哈希表下面有若干个子哈希表。

Segment

我们再来具体了解一下Segment的数据结构:

 

Java代码   收藏代码
  1. static final class Segment<K,V> extends ReentrantLock implements Serializable {  
  2.     transient volatile int count;  
  3.     transient int modCount;  
  4.     transient int threshold;  
  5.     transient volatile HashEntry<K,V>[] table;  
  6.     final float loadFactor;  
  7. }  
 

 

详细解释一下Segment里面的成员变量的意义:

  • count:Segment中元素的数量
  • modCount:对table的大小造成影响的操作的数量(比如put或者remove操作)
  • threshold:阈值,Segment里面元素的数量超过这个值依旧就会对Segment进行扩容
  • table:链表数组,数组中的每一个元素代表了一个链表的头部
  • loadFactor:负载因子,用于确定threshold
HashEntry

Segment中的元素是以HashEntry的形式存放在链表数组中的,看一下HashEntry的结构:

 

Java代码   收藏代码
  1. static final class HashEntry<K,V> {  
  2.     final K key;  
  3.     final int hash;  
  4.     volatile V value;  
  5.     final HashEntry<K,V> next;  
  6. }  
 

可以看到HashEntry的一个特点,除了value以外,其他的几个变量都是final的,这样做是为了防止链表结构被破坏,出现ConcurrentModification的情况。


---------------------------------------------------------------------------------------------------------------------------------------

ConcurrentHashMap这样设计有什么好处呢?

    ConcurrentHashMap优势就是采用了【 锁分段技术 】,每一个Segment就好比一个自治区,读写操作高度自治,Segment之间互不影响。

    

Case1:不同Segment 的并发写入

这里写图片描述

不同Segment的写入是可以并发执行的。

Case2:同一Segment的一写一读

这里写图片描述

同一Segment的写和读是可以并发执行的。

Case3:同一Segment的并发写入

这里写图片描述

Segment的写入是需要上锁的,因此对同一Segment的并发写入会被阻塞。

由此可见,ConcurrentHashMap当中每个Segment各自持有一把锁。在保证线程安全的同时降低了锁的粒度,让并发操作效率更高。

---------------------------------------------------------------------------------------------------------------------------------------

Concurrent 的读写过程

Get方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.再次通过hash值,定位到Segment当中数组的具体位置。

Put方法:

1.为输入的Key做Hash运算,得到hash值。

2.通过hash值,定位到对应的Segment对象

3.获取可重入锁

4.再次通过hash值,定位到Segment当中数组的具体位置。

5.插入或覆盖HashEntry对象。

6.释放锁。

读写操作均需要二次定位到Segment

---------------------------------------------------------------------------------------------------------------------------------------

ConcurrentHashMap 在调用Size 方法时如何解决一致性问题?

Size方法的目的是统计ConcurrentHashMap的总元素数量, 自然需要把各个Segment内部的元素数量汇总起来。

但是,如果在统计Segment元素数量的过程中,已统计过的Segment瞬间插入新的元素,这时候该怎么办呢?

ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:

1.遍历所有的Segment。

2.把Segment的元素数量累加起来。

3.把Segment的修改次数累加起来。

4.判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。

5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。

6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。

7.释放锁,统计结束。


public int size() {
   // Try a few times to get accurate count. On failure due to
   // continuous async changes in table, resort to locking.
   final Segment<K,V>[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts
    long last = 0L;   // previous sum
    int retries = -1; // first iteration isn't retry
    try {
        for (;;) {
            if (retries++ == RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    sum += seg.modCount;
                    int c = seg.count;
                    if (c < 0 || (size += c) < 0)
                        overflow = true;
                }
            }
            if (sum == last)
                break;
            last = sum;
        }
    } finally {
        if (retries > RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
}

为什么这样设计呢?这种思想和乐观锁悲观锁的思想如出一辙。

为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。


参考:https://my.oschina.net/hosee/blog/675884


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值