问题描述
给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
输入的第一行为一个整数n,表示棋盘的大小。
接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
public class 二N皇后问题
{
static int n,count=0; //n表示棋盘的大小,count则为上文提到的计数变量记录放置方法的个数
static int map[][]; //二维数组表示棋盘
public static void main(String args[])
{
Scanner cn=new Scanner(System.in);
n=cn.nextInt(); //相关变量的录入
map=new int[n][n];
for(int i=0;i<n;i++) //棋盘具体值的录入(0或1)
for(int j=0;j<n;j++)
map[i][j]=cn.nextInt();
Put(0,2); //从第一行开始进行白皇后的放置,2代表白,3代表黑
System.out.println(count); //当所有的方法都寻找完成后,输出找到的方法个数
}
public static void Put(int t,int s) //放置皇后的函数
{
if(t==n) //进行当前类型皇后的放置数量是否达到要求,即是否到了棋盘的最后一行
{
if(s==2)Put(0,3); //如果白皇后放置成功,则进行黑皇后的放置
else count++; //放置方法招到了一种,计数变量进行值加一
return ; //当前整体放置过程结束,进行程序的回溯
}
for(int i=0;i<n;i++) //对每一行的值逐个进行操作
{
if(map[t][i]!=1)continue; //当前位置是否为1的判断
if(Check(t,i,s)){map[t][i]=s;} //是否满足题目要求判断,满足赋值
else continue; //不满足,同一行的下一个位置
Put(t+1,s); //下一行皇后的放置
map[t][i]=1; //回溯法的关键
}
return ; //进行相应的回溯
}
public static boolean Check(int t,int i,int s) //满足题目要求的判断函数
{
for(int q=t-1;q>=0;q--) //当前位置上方是否进行了相同皇后的放置 这行以下的还没放不检查
{
if(map[q][i]==s)return false;
}
for(int q=t-1,w=i-1;q>=0&&w>=0;q--,w--) //检查左对角线 这行以下的还没放不检查
{
if(map[q][w]==s)return false;
}
for(int q=t-1,w=i+1;q>=0&&w<=n-1;q--,w++) //检查右对角线 这行以下的还没放不检查
{
if(map[q][w]==s)return false;
}
return true; //都满的情况下,则可以进行当前皇后的放置
}
}