基础练习 2n皇后问题

问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0

public class 二N皇后问题    
{    
    static int n,count=0;                  //n表示棋盘的大小,count则为上文提到的计数变量记录放置方法的个数  
    static int map[][];                    //二维数组表示棋盘  
    public static void main(String args[])    
    {    
        Scanner cn=new Scanner(System.in);    
        n=cn.nextInt();                    //相关变量的录入   
        map=new int[n][n];    
        for(int i=0;i<n;i++)               //棋盘具体值的录入(0或1)  
            for(int j=0;j<n;j++)    
                map[i][j]=cn.nextInt();    
        Put(0,2);                          //从第一行开始进行白皇后的放置,2代表白,3代表黑  
        System.out.println(count);         //当所有的方法都寻找完成后,输出找到的方法个数  
    }    
    public static void Put(int t,int s)    //放置皇后的函数  
    {    
        if(t==n)                           //进行当前类型皇后的放置数量是否达到要求,即是否到了棋盘的最后一行  
        {    
            if(s==2)Put(0,3);              //如果白皇后放置成功,则进行黑皇后的放置  
            else count++;                  //放置方法招到了一种,计数变量进行值加一  
            return ;                       //当前整体放置过程结束,进行程序的回溯  
        }    
        for(int i=0;i<n;i++)               //对每一行的值逐个进行操作  
        {               
            if(map[t][i]!=1)continue;      //当前位置是否为1的判断  
            if(Check(t,i,s)){map[t][i]=s;} //是否满足题目要求判断,满足赋值  
            else continue;                 //不满足,同一行的下一个位置  
            Put(t+1,s);                    //下一行皇后的放置  
            map[t][i]=1;                   //回溯法的关键        
        }    
        return ;                           //进行相应的回溯  
    }    
    public static boolean Check(int t,int i,int s)   //满足题目要求的判断函数  
    {    
        for(int q=t-1;q>=0;q--)                      //当前位置上方是否进行了相同皇后的放置 这行以下的还没放不检查    
        {    
            if(map[q][i]==s)return false;    
        }           
        for(int q=t-1,w=i-1;q>=0&&w>=0;q--,w--)      //检查左对角线 这行以下的还没放不检查    
        {    
            if(map[q][w]==s)return false;    
        }    
        for(int q=t-1,w=i+1;q>=0&&w<=n-1;q--,w++)    //检查右对角线 这行以下的还没放不检查    
        {    
            if(map[q][w]==s)return false;    
        }    
        return true;                                 //都满的情况下,则可以进行当前皇后的放置  
    }    
}    
### 回答1: 这是一个经典的问题,也称为“八皇后问题”的扩展。我们可以使用回溯算法来解决这个问题。具体来说,我们可以从第一行开始,依次尝试在每一列一个皇后一个皇后,然后递归到下一行。在递归过程中,我们需要检查当前位置是否可以皇后,如果可以,就继续递归下一行;如果不行,就回溯到上一行,尝试在下一列皇后。 为了检查当前位置是否可以皇后,我们需要维护三个数组:列数组、对角线数组和反对角线数组。列数组表示每一列是否已经有皇后,对角线数组表示每一条从左上到右下的对角线是否已经有皇后,反对角线数组表示每一条从右上到左下的对角线是否已经有皇后。当我们要在第i行第j列皇后时,我们需要检查列数组、对角线数组和反对角线数组中第j个元素、第i+j个元素和第i-j+n-1个元素是否为,如果都是,就可以皇后。 当我们成功置n个黑皇后和n个白皇后时,就找到了一组解。如果我们要找到所有解,就需要继续递归下去,直到置完所有皇后。如果我们只需要找到一组解,就可以在找到第一组解后立即返回。 ### 回答2: 题目要求在一个给定大小的棋盘置黑白各n个的皇后,并且要求黑皇后和白皇后互相不在同一行、同一列或同一条对角线上。我们可以采用回溯法来解决这个问题。 回溯法是一种深度优先搜索的方法,它将搜索策略建立在试错的基础上,每次在搜索到某一状态时,会尝试所有可能的情况,如果发现当前情况无法满足要求,则返回上一个状态重新搜索。具体的,我们可以使用一个二维数组来表示当前状态下棋盘皇后位置。 首先,我们需要确定如何判断黑皇后和白皇后是否在同一行、同一列或同一条对角线上。对于同一行和同一列的情况,我们可以在每一行和每一列分别一个皇后,并记录下已经占用的列和行。对于同一条对角线的情况,我们可以将棋盘上的每一条线(即包含至少一个棋子的横线、竖线和斜线)都看成一条链,然后使用链表数据结构来维护每条链中已经占用的位置。具体的,我们可以为每条链(根据位置确定)创建一个链表,每次置新的皇后时,就将它加入对应链表中,并检查是否与已有的皇后冲突。 接下来,我们可以使用递归函数来进行搜索。具体的,我们可以从每一行开始,依次枚举每一列,并判断当前位置是否可以置黑皇后或白皇后。如果可以皇后,则记录下当前状态,并尝试在下一行置另一种颜色的皇后。如果所有皇后置完成,则表示已经找到一组符合要求的方案,输出并返回。如果当前状态无法皇后,则返回上一个状态。 具体的代码实现比较繁琐,这里不再赘述。总的来说,该问题可以通过回溯法来解决,难点在于如何判断皇后是否在同一条对角线上,以及如何确定搜索策略。 ### 回答3: 这是一个经典的问题,叫做"N皇后问题",只不过这里要求置的皇后颜色不同。解决此问题的常见方法是采用回溯算法。 回溯算法的基本思路是从棋盘的第一行开始皇后,每次置后判断是否符合要求,如果符合要求,就转到下一行继续置。如果当前行的所有位置不能皇后,那么就需要回溯到上一行,重新选择可行的位置皇后,直到找到合适的方案或者所有可能的方案都被尝试过。 对于这道题要特别注意,黑皇后和白皇后需要互相独立,可以分别采用回溯算法来置。同时,对于不能皇后位置,需要对算法进行一些修改,以避开这些位置。 具体而言,可以先建立一个n*n的棋盘数组,将初始值全部设为0,表示所有位置都可以皇后。然后将不能皇后位置的值设置为-1,表示这些位置不可用。接着,从第一行开始逐行置黑皇后,对于每一行,从左往右逐个检查是否可行,如果有可行的位置,则在该位置置黑皇后,并修改该列和两条对角线上的值。这样,对于下一行置白皇后时,只需要在值为0的位置置即可。 在实现过程中,还需要注意回溯的实现,即在每一次选择之后,都需要重新恢复之前状态的值。否则可能会出现重复计算的问题,导致算法效率降低。 总之,这是一道比较复杂的算法问题,需要耐心和认真地思考和实现。通过这道题的练习,可以加深对回溯算法和递归思想的理解和掌握。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>