关于np.array的一维二维三维 分析

一维:

v1=np.array([1,2,3])

print(v1.shape)
print(v1[0])
print(v1[0:])

输出:



二维:第一种情况

v3=np.array([[1,2,3],[4,5,6]])
print(v3.shape)
print(v3[0])
print(v3[0][0])
print(v3[0:1,0:2])   #逗号前选取行(前取后不取),逗号后选取列


输出:


第二种情况

v3=np.array([[1,3],[4,5,6]])
print(v3.shape)
print(v3[0])
print(v3[0][0])
print(v3[0:1])

输出:


三维:

v1=np.array([[[1,2,3],[1,2,0]],[[5,6,7],[9,8,7]]])
print(v1.shape)
print(v1[1][1][0])
print(v1[1][1])
print(v1[1])
print(v1[0:1,1:2,1:2])  #选取行列深度









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值