1019 数字黑洞 (20分)
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0,104
)区间内的正整数N。
输出格式:
如果N的 4 位数字全相等,则在一行内输出N - N = 0000
;否则将计算的每一步在一行内输出,直到6174
作为差出现,输出格式见样例。注意每个数字按4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
题目解析:
题坑:输入数字的区间是(0,104)不要想当然的以为输入的数字是4位数,比如给了一个数字22,我们需要在22后面或前面补两个0,补成4位。这里在那补都是可以的,前面后面中间都行,因为还需要把数字从小到大排序。
再一个需要注意的就是如果算出来的结果是三位数需要在前面补一个0,如果中间有一个数是3位数,也需要在前面补一个0,总之就是每个数都是4位数。
AC代码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s=new Scanner(System.in);
String str=s.nextLine();
//判断刚输入的数是几位,如果<4位的话需要补0
int length=str.length();
if(length<4){
for(int i=0;i<4-length;i++){
str+=0;
}
}
char[] N=str.toCharArray();
//StringBuffer和StringBuilder在乙级1017的代码注释中简单写了些,不明白的可以去看一下
//sb1用来储存从大到小排列的数字的字符串,sb2就是从小到大
StringBuilder sb1=new StringBuilder();
StringBuilder sb2=new StringBuilder();
int cha=0;//大数-小数的差
while(cha!=6174){
//对N中的数字按从大到小排序
for(int i=0;i<N.length-1;i++){
for(int j=i;j<N.length;j++){
if(N[i]<N[j]){
char c=N[i];
N[i]=N[j];
N[j]=c;
}
}
}
//N中按从大到小排序,那么数组从左到右就是从大到小
for(int i=0;i<N.length;i++){
sb1.append(N[i]);
}
//数组从右到左排列的数字就是从小到大
for(int i=N.length-1;i>=0;i--){
sb2.append(N[i]);
}
//计算出cha,此时cha是int型
cha=Integer.parseInt(String.valueOf(sb1))-Integer.parseInt(String.valueOf(sb2));
//如果差是0,说明给的数4个数字完全相同,按题目要求输出,然后结束循环
if(cha==0){
System.out.print(sb1+" - "+sb2+" = "+"0000");
return;
}
//因为cha可能是3位,所以需要判断,如果是3位的话还要在前面补个0
String temp;//temp存储四位数的结果
if(String.valueOf(cha).length()<4){
temp="0"+cha;
}else{
temp=String.valueOf(cha);
}
N=temp.toCharArray();
System.out.println(sb1+" - "+sb2+" = "+temp);
//清空sb1和sb2
sb1.delete(0,sb1.length());
sb2.delete(0,sb2.length());
}
}
}