单位对角矩阵的特性分析

     矩阵可以理解为向量。所谓向量,就是在一个正交坐标系下,有大小和方向的量。二维/三维矩阵的向量描述,可以用几何图形表示。

      例如以下二维矩阵:

           D=

      可以用图一表示:

                           图一             

     α=a11i+a12j;

     β=a21i+a22j;

     假如A 是两个三维向量(坐标系是xyz),B是二维向量(坐标系是XY),这两个矩阵的乘积,可以理解为坐标系的变换。

            

       A与B的乘积,可以看成是把三维向量转化为二维向量。B是转换公式,新的坐标系是XY。相乘的结果,是两个二维向量。

从这个角度来考虑:

  1. 转换前后,向量的个数是没有变化的,即:变化前后的向量个数是一样的。
  2. 向量的个数,由第一个矩阵的行数确定。
  3. 向量的维数是可以变化的。变换前后,不一定要求维数是一样的。
  4. 矩阵的行代表向量的维数。第一个矩阵行的元素个数,代表原始坐标系的维数;第二个矩阵行的元素个数代表目标坐标系的维数。第二个矩阵的行数,要等于原始坐标系的维数。
  5. 第二个矩阵的大小,由原始坐标系和目标坐标系决定,与向量的个数无关。
  6. 如果两个矩阵A、B的乘积存在,则矩阵B、A的乘积不一定存在。因为A矩阵包含向量的个数,不是单纯的坐标系转换。

任何单位对角矩阵(即对角线上的元素为1,其他元素为0),与相同大小的矩阵相乘,结果是这个矩阵自身。可以理解为,单位对角矩阵与变换矩阵的乘积,就是变换矩阵本身。

图二是用Matlab实现的一个单位对角矩阵,对角线上的点为1,其余的点位0;

                                     图二

 图三是一张正常的彩色图片的灰度图经过图形转换的前后对比。变换方式是:

tform=maketform('projective',[1 0 0;.5 2 0;0 0 1])

           图三

  图四是单位对角矩阵经过相同变换后的图形。

          图四

  图五是单位对角矩阵变换后的矩阵数据截图(原始数据为对角线上的值为255,其余为0)。

图五

图六是单位对角矩阵变换前后每个像素点的形状对比。

图六

单位对角矩阵的变换结果,就是变换矩阵自身。所以,可以看到该变换的特点:

  1. 输出矩阵的行和列的大小有变化(有插值);
  2. 在矩阵的对角线上的值有变化,并且周围3个像素的值有相应变化。

END

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值