三角形ABC中,设:
1.从A向BC边作垂线,垂足为D。
2.从B向AC边作垂线,垂足为E。
3.垂线AD和BE相交于H。
4.连接C和H,延长AH线,与AB线相交于F。
5.证明CF垂直于AB。
图(1)
证明:
1.连接ED,作辅助线ED.
2.由于BE与AC垂直,角HEC=90°。同样,角HDC=90°。
3.四边形HDCE为一个圆内接四边形。
4.相同弧段HD对应的圆周角相等,即:角HED=角HCD=a,
5.同理,四边形ABDE也是圆内接四边形。
6.相同弧段ED对应的圆周角相等,即:角EAD=角EBD=b,
7.相同弧段DB对应的圆周角相等,即:角BAD=角DEB=a.
8.角FCB+角CBF=a+b+角EBA.
9.在直角三角形BAE中,角EAB+角EBA=a+b+角EBA=90°。
10.将9带入8式,得到:角FCB+角CBF=90°。则,角CFB=180-90=90°。即;CF垂直于AB.
图(2)