用几何方法证明三角形三条高线交于一点

三角形ABC中,设:

1.从A向BC边作垂线,垂足为D。

2.从B向AC边作垂线,垂足为E。

3.垂线AD和BE相交于H。

4.连接C和H,延长AH线,与AB线相交于F。

5.证明CF垂直于AB。

                               

                                                                            图(1)

证明:

1.连接ED,作辅助线ED.

2.由于BE与AC垂直,角HEC=90°。同样,角HDC=90°。

3.四边形HDCE为一个圆内接四边形。

4.相同弧段HD对应的圆周角相等,即:角HED=角HCD=a,

5.同理,四边形ABDE也是圆内接四边形。

6.相同弧段ED对应的圆周角相等,即:角EAD=角EBD=b,

7.相同弧段DB对应的圆周角相等,即:角BAD=角DEB=a.

8.角FCB+角CBF=a+b+角EBA.

9.在直角三角形BAE中,角EAB+角EBA=a+b+角EBA=90°。

10.将9带入8式,得到:角FCB+角CBF=90°。则,角CFB=180-90=90°。即;CF垂直于AB.

                                   

                                                                              图(2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值