【LeetCode】数组——二分查找法

1 二分查找法

1.1 介绍

二分查找法,也称为折半查找法,是一种在有序数组中查找特定元素的高效算法。

  • 核心:区间的定义(闭合)

    • 根据区间的定义去判断数组的right位置;

    • 在while循环中left与right的关系(</<=);

    • 在更改区间时right与left的取值。

  • 在左闭右闭[left, right]的时候:

right = len(nums) - 1
right = mid -1
left = mid + 1

  • 在左闭右开[left, right)的时候:

right = len(nums)
right = mid
left = mid + 1

2 LeetCode相关题解

2.1 704. 二分查找

704.二分查找链接

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。


示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4


示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1


提示:

你可以假设 nums 中的所有元素是不重复的。
n 将在 [1, 10000]之间。
nums 的每个元素都将在 [-9999, 9999]之间。


// 使用左闭右闭[left, right]区间
int search(int* nums, int numsSize, int target) {
    int left = 0;
    int right = numsSize - 1;
    int mid = 0;

    while(left <= right)
    {
        mid = (left + right)/2;
        if(nums[mid] == target) return mid;
        else if(nums[mid] > target) right = mid - 1;
        else if(nums[mid] < target) left = mid + 1;
    }
    return -1;
}

// 使用左闭右开[left, right)区间
int search(int* nums, int numsSize, int target) {
    int left = 0;
    int right = numsSize;
    int mid = 0;

    while(left < right)
    {
        mid = (left + right)/2;
        if(nums[mid] == target) return mid;
        else if(nums[mid] > target) right = mid;
        else if(nums[mid] < target) left = mid + 1;
    }
    return -1;
}

2.2 35.搜索插入位置

35.搜索插入位置链接

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。


示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2


示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1


示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4


提示:

1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 为 无重复元素 的 升序 排列数组
-104 <= target <= 104


int searchInsert(int* nums, int numsSize, int target) {
    int left = 0;
    int right = numsSize - 1;
    int mid = 0;

    while(left <= right)
    {
        mid = (left + right)/2;
        if(nums[mid] == target) return mid;
        else if(nums[mid] > target) right = mid - 1;
        else if(nums[mid] < target) left = mid + 1;     
    }
    return left;
}

2.3 34. 在排序数组中查找元素的第一个和最后一个位置

34.在排序数组中查找元素的第一个和最后一个位置链接

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。


示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]


示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]


示例 3:

输入:nums = [], target = 0
输出:[-1,-1]


提示:

0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums 是一个非递减数组
-109 <= target <= 109


int* searchRange(int* nums, int numsSize, int target, int* returnSize) {
    int *ret = (int *)malloc(2*sizeof(int));
    ret[0] = -1;
    ret[1] = -1;
    *returnSize = 2;

    if(numsSize == 0 || target > nums[numsSize-1] || target < nums[0])
        return ret;

    int start_position = -1;
    int end_position = -1;
    int left = 0;
    int right = numsSize - 1;
    int mid = 0;

    // 寻找左边界
    while(left <= right)
    {
        mid = (left + right)/2;
        if(nums[mid] > target)  right = mid - 1;
        else if(nums[mid] < target) left = mid + 1;
        else 
        {
            right = mid - 1;      //当nums[mid] == target的时候,更新right,这样才能得到target的左边界  
            start_position = mid; 
        }
    }
    
    left = 0;
    right = numsSize - 1;
    // 寻找右边界
    while(left <= right)
    {
        mid = (left + right)/2;
        if(nums[mid] > target)  right = mid - 1;
        else if(nums[mid] < target) left = mid + 1;
        else 
        {
            left = mid + 1;        //当nums[mid] == target的时候,更新left,这样才能得到target的右边界
            end_position = mid; 
        }
    }

    if(start_position != -1 && end_position != -1)
    {
        ret[0] = start_position;
        ret[1] = end_position;
    }
    return ret;
}

2.4 69.x的平方根

69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。


示例 1:

输入:x = 4
输出:2


示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。


提示:

0 <= x <= 231 - 1


int mySqrt(int x) {
    int left = 0;
    int right = x;
    int ret = -1;
    
    while(left <= right)
    {
        int mid = (left + right)/2;
        if((long long )mid*mid < x) 
        {
            ret = mid;
            left = mid+1;
        }
        else  right = mid-1;
    }
    return ret;
}

2.5 367.有效的完全平方数

367.有效的完全平方数

给你一个正整数 num 。如果 num 是一个完全平方数,则返回 true ,否则返回 false 。

完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。

不能使用任何内置的库函数,如 sqrt 。


示例 1:

输入:num = 16
输出:true
解释:返回 true ,因为 4 * 4 = 16 且 4 是一个整数。


示例 2:

输入:num = 14
输出:false
解释:返回 false ,因为 3.742 * 3.742 = 14 但 3.742 不是一个整数。


提示:

1 <= num <= 231 - 1


bool isPerfectSquare(int num) {
    int left = 0;
    int right = num;

    while(left <= right)
    {
        int mid = (right + left)/2;
        if((long long)mid*mid == num) return true;
        else if((long long)mid*mid < num) left = mid+1;
        else right = mid-1;
    }
    return false;
}

这一题跟上一题都需要注意:mid*mid要转化为long long类型,不然会报溢出错误(runtime error: signed integer overflow: 1000052909 * 1000052909 cannot be represented in type ‘int’)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值