最长不下降序列

Description
有由n个不相同的整数组成的数列,记为a(1)、a(2)、…a(n),当i!=j时,a(i)!=a(j)。若存在i1 < i2 < i3 < … < ie,且有a(i1) < a(i2) < … < a(ie), 则称为长度为e的不下降序列。 如 3,18,7,14,10,12,23,41,16,24 则有3,18,23,24是一个长度为4的不下降子序列 3,7,10,12,23,24是长度为6的不下降子序列。 现要求你求最长的不下降子序列。
Input
多组测试数据 每组一行,先输入一个数列长度n (1 <= n <= 1000),然后是n个整数 处理到文件末尾
Output
输出最长不下降子序列的长度
Sample Input
10 3 18 7 14 10 12 23 41 16 24
Sample Output
6

#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>

using namespace std;

int f[1010],a[1010];

int main()
{
	int n;
	while(cin>>n)
	{
	   for(int i=1;i<=n;i++)   cin>>a[i];
	   for(int i=1;i<=n;i++) f[i]=1;
	
	   int ans=1;
	   for(int i=2;i<=n;i++)
	   {
	       for(int j=1;j<i;j++)
	       {
	           if(a[j]<a[i]) f[i]=max(f[i],f[j]+1);
           }
           ans=max(ans,f[i]);
       }
       cout<<ans<<endl;
    }
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值