codeforces 1012C 区间DP

codeforces 1012C


题意:

给 定 n 座 山 的 高 度 , 第 i 座 山 的 高 度 为 a i 。 给定n座山的高度,第i座山的高度为a_i。 niai
你 需 要 在 n 座 山 上 一 共 造 [ n 2 ] 座 房 子 , 且 房 子 只 能 造 在 高 于 两 边 山 的 山 坡 上 。 你需要在n座山上一共造[\frac n2]座房子,且房子只能造在高于两边山的山坡上。 n[2n]
你 可 以 在 一 小 时 内 减 少 任 意 山 的 高 度 。 你可以在一小时内减少任意山的高度。
问 修 建 k ( 1 ≤ k ≤ [ n 2 ] ) 座 房 子 的 最 短 用 时 , 要 求 输 出 所 有 情 况 。 问修建k(1≤k≤[\frac n2])座房子的最短用时,要求输出所有情况。 k(1k[2n])


题解:

d p [ i ] [ j ] [ k ] 表 示 在 区 间 [ 1 , i ] 内 建 j 座 房 子 , 且 在 第 i 座 山 建 ( k = 1 ) 或 不 建 ( k = 0 ) 房 子 的 最 短 用 时 。 dp[i][j][k]表示在区间[1,i]内建j座房子,且在第i座山建(k=1)或不建(k=0)房子的最短用时。 dp[i][j][k][1,i]ji(k=1)(k=0)

  • 第 i 座 山 不 建 房 子 , d p [ i ] [ j ] [ 0 ] = m i n ( d p [ i − 1 ] [ j ] [ 0 ] , d p [ i − 1 ] [ j ] [ 1 ] + m a x ( 0 , a [ i ] − a [ i − 1 ] + 1 ) ) 第i座山不建房子,dp[i][j][0] = min(dp[i-1][j][0], dp[i-1][j][1]+max(0, a[i]-a[i-1]+1)) idp[i][j][0]=min(dp[i1][j][0],dp[i1][j][1]+max(0,a[i]a[i1]+1))
  • 第 i 座 山 建 房 子 , d p [ i ] [ j ] [ 1 ] = m i n ( d p [ i − 2 ] [ j − 1 ] [ 0 ] + m a x ( 0 , a [ i − 1 ] − a [ i ] + 1 ) , d p [ i − 2 ] [ j − 1 ] [ 1 ] + m a x ( 0 , a [ i − 1 ] − m i n ( a [ i − 2 ] , a [ i ] ) + 1 ) ) 第i座山建房子,dp[i][j][1] = min(dp[i-2][j-1][0]+max(0, a[i-1]-a[i]+1), dp[i-2][j-1][1]+max(0, a[i-1]-min(a[i-2], a[i])+1)) idp[i][j][1]=min(dp[i2][j1][0]+max(0,a[i1]a[i]+1),dp[i2][j1][1]+max(0,a[i1]min(a[i2],a[i])+1))

#include <bits\stdc++.h>
using namespace std;
const int N = 5005;
int a[N];
int dp[N][N/2][2];

int main() {
    int n;
    cin >> n;
    for(int i = 1 ; i <= n ; i++){
        cin >> a[i];
    }
    memset(dp, 0x3f, sizeof(dp));
    dp[1][0][0] = dp[1][1][1] = 0;
    for(int i = 2 ; i <= n ; i++){
        dp[i][0][0] = 0;
        for(int j = 1 ; j <= (i+1)/2 ; j++){
            dp[i][j][0] = min(dp[i-1][j][0], dp[i-1][j][1]+max(0, a[i]-a[i-1]+1));
            dp[i][j][1] = min(dp[i-2][j-1][0]+max(0, a[i-1]-a[i]+1), dp[i-2][j-1][1]+max(0, a[i-1]-min(a[i-2], a[i])+1));
        }
    }
    for(int i = 1 ; i <= (n+1)/2 ; i++){
        cout << min(dp[n][i][0], dp[n][i][1]) << ' ';
    }
    return 0; 
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值