codeforces 204A 数位DP

codeforces 204A


题意:

给 定 区 间 [ l , r ] , 限 制 条 件 : 给定区间[l,r],限制条件: [l,r]

  • 第 一 位 数 与 最 后 一 位 数 相 等 第一位数与最后一位数相等

问 区 间 内 满 足 以 上 条 件 的 数 的 个 数 。 问区间内满足以上条件的数的个数。


题解:

d p [ p o s ] [ s t ] 表 示 查 到 到 第 p o s 位 , 第 一 位 数 为 s t 的 合 法 数 的 个 数 。 dp[pos][st]表示查到到第pos位,第一位数为st的合法数的个数。 dp[pos][st]posst

  • 记 忆 化 搜 索 , d f s ( p o s − 1 , ( l e a d = = 0 ) & & ( i ! = 0 ) ? i : s t , p o s = = 1 ? i : e d , l e a d ∣ ∣ i , l i m i t & & i = = b i t [ p o s ] ) 记忆化搜索,dfs(pos-1, (lead == 0) \&\& (i != 0) ? i : st, pos == 1 ? i : ed, lead || i, limit \&\& i == bit[pos]) dfs(pos1,(lead==0)&&(i!=0)?i:st,pos==1?i:ed,leadi,limit&&i==bit[pos])

#include <bits\stdc++.h>
using namespace std;
typedef long long ll;
int bit[20];
ll dp[20][10];

ll dfs(int pos, int st, int ed, bool lead, bool limit){
    if(pos == 0){
        return st == ed;
    }
    if(!limit && dp[pos][st] != -1){
        return dp[pos][st];
    }
    int up = (limit ? bit[pos] : 9);
    ll res = 0;
    for(int i = 0 ; i <= up ; i++){
        res += dfs(pos-1, (lead == 0) && (i != 0) ? i : st, pos == 1 ? i : ed, lead || i, limit && i == bit[pos]);
    }
    if(!limit){
        dp[pos][st] = res;
    }
    return res;
}

ll count(ll x){
    if(x == 0){
        return 1;
    }
    int len = 0;
    while(x){
        bit[++len] = x%10;
        x /= 10;
    }
    return dfs(len, 0, -1, false, true);
}

int main() {
    memset(dp, -1, sizeof(dp));
    ll l, r;
    cin >> l >> r;
    cout << count(r)-count(l-1) << endl;
    return 0; 
}
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值