前言
在上一遍中,我们已经学会了如何用队列实现栈基础算法面试题—如何用队列实现栈(1),本文我们稍微转变一下思路,看一下第二种优化解法。
解题思路
当然还是需要两个队列来实现,与第一种解法不同的是,这次我们是在每次要添加元素时来交换队列中的元素,还是假设现在有两个队列分别为:A和B,当每次要弹出元素时都从A队列中弹出,而当要添加元素时,则先把当前要添加的元素添加到队列B中,再把A队列中的元素依次弹出并添加到B队列中,再交换A、B队列的角色。
图解分析
1、假设现在要添加一个元素1,先把1添加到队列B中。
2、1被添加到队列B中后,由于队列A中没有元素,所以接着队列A、B互相交换角色,原来的队列A变为队列B,原来的队列B变为队列A。
3、此时再添加一个元素2,还是先把2添加到队列B中。
4、再把队列A的元素依次弹出并添加到队列B中。
5、队列A、B互相交换角色。
6、需要取出元素时,直接从队列A中取即可。
代码实现
import java.util.LinkedList;
import java.util.Queue;
class MyStack_02 {
Queue<Integer> queue_one = new LinkedList<>();
Queue<Integer> queue_two = new LinkedList<>();
/**
* Initialize your data structure here.
*/
public MyStack_02() {
}
/**
* Push element x onto stack.
*/
public void push(int x) {
queue_two.offer(x);
while (!queue_one.isEmpty()) {
queue_two.offer(queue_one.poll());
}
Queue<Integer> temp = queue_one;
queue_one = queue_two;
queue_two = temp;
}
/**
* Removes the element on top of the stack and returns that element.
*/
public int pop() {
return queue_one.poll();
}
/**
* Get the top element.
*/
public int top() {
return queue_one.peek();
}
/**
* Returns whether the stack is empty.
*/
public boolean empty() {
return queue_one.isEmpty();
}
}
可以看出这次的方式在获取top时,直接通过peek就得到了结果,相比上一遍文章每次都需要遍历到最后一个元素,在时间复杂度上直接从O(n)降到了O(1)。