#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
struct point
{
long long x;
long long y;
} P[50005], S[50005]; //P中存点,S模拟栈存凸包的点;
long long xx;
long long yy;
// 计算各个点相对于P0的幅角α,按从小到大的顺序对各个点排序
bool cmp(struct point a, struct point b)
{
if(atan2(a.y-yy,a.x-xx) != atan2(b.y-yy,b.x-xx)) //atan2函数求幅角
return (atan2(a.y-yy,a.x-xx)) < (atan2(b.y-yy,b.x-xx));
// 当α相同时(在同一条直线上),距离P0比较近的排在前面
if (a.x != b.x)
return abs(a.x) < abs(b.x);
return abs(a.y) < abs (b.y);
}
//叉积判断c在直线ab的位置
long long Compare(struct point a, struct point b, struct point c)
{
return ((a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y)); // (x1-x)*(y2-y)-(x2-x)*(y1-y)
}
int main()
{
int n,i,j;
while(cin>>n)
{
yy=1000005;
for(i=0; i<n; i++)
{
cin>>P[i].x>>P[i].y;
if(P[i].y < yy)
{
yy=P[i].y; // 记录纵坐标最小的点(xx,yy) 及位置 i
xx=P[i].x;
j=i;
}
}
P[j]=P[0]; // P[j]是凸包上的点,删去后按照幅角排序
sort(P+1, P+n, cmp);
S[0].x=xx;
S[0].y=yy;
S[1]=P[1]; //P[1]也是凸包上的点,入栈
int top=1;
for(i=2; i<n;)
{
if(top && (Compare(S[top-1], S[top], P[i]) < 0)) //表示栈顶元素不为凸包上的点,栈顶元素出栈,继续判断当前点
top--;
else //表示当前点为凸包上的点,入栈
S[++top]=P[i++];
}
if (P[n-1].x==xx) //排除一种情况
{
top--;
for (i=n-1; i>=2; i--)
if (P[i].x==xx)
S[++top]=P[i];
}
for(i=0; i<=top; i++)
cout<<"("<<S[i].x<<","<<S[i].y<<")"<<endl;
}
return 0;
}
/*
测试数据
9
0 0
2 3
4 1
1 2
3 3
3 6
4 4
-1 4
-2 3
(0,0)
(4,1)
(4,4)
(3,6)
(-1,4)
(-2,3)
4
0 0
0 2
0 1
1 1
(0,0)
(1,1)
(0,2)
(0,1)
*/
凸包问题—Graham扫描法
最新推荐文章于 2022-10-19 16:34:45 发布