混淆矩阵、ROC与auc

混淆矩阵
模型A示例:
示例

 1. 正例:在模型 A 的场景中,猫是正例。
 2. 负例:在模型 A 的场景中,其他是负例。
 3. TP(真阳性):真实的类别是猫,同时模型也预测为猫,有 60 张。
 4. FP(假阳性):真实的类别是其他,但模型预测为猫,有 20 张。
 5. TN(真阴性):真实的类别是其他,同时模型也预测为其他,有 10 张。
 6. FN(假阴性):真实的类别是猫,但模型预测为其他,有 10 张。

1. 正确率: 被正确分类的样本比例,衡量预测值与真值相符合的程度
 Accuracy = (TP + TN ) / (TP + FP + FN + TN)
 Accuracy_A = (60 + 10)/ (60 + 20 + 10 + 10) = 0.7
 
2. 错误率:被错误分类的样本比例
 Error = (FP+FN) / (TP + FP + FN + TN)
 Error_A = (20 + 10) / (60 + 20 + 10 + 10) = 0.3
 
3. 召回率(真阳率 True Positive Rate):模型预测为正例的样本占实际正例样本数量的比例,
衡量模型能在验证集中找回多少正例
 TPR = TP / (TP + FN)
 recall_model_A = 60 / 70 = 0.85

4. 假阳率(False Positive Rate):预测为正例的样本占实际负例样本数量的比例
FPR = FP / (FP + TN) 
FPR_A = 20 / (20 + 10) = 0.667

5. 精确率:模型认为一条数据是正例,那么有多大的概率确实是正例
 precision(TPR) = TP / (TP + FP)
 precision_A = 60 / 80 = 0.75

6. 特异性(Specificity):实际是负例,分类器预测结果的类别也是负例的比例。
 specificity(TNR) = TN / (TN + FP)
 specificity_A = 10 / (10 + 20) = 0.333

7. F1-Score = 2 * Precision * Recall / (Precision + Recall)
 F1 = 2 * 0.75 / (0.75 + 0.85) = 0.9375

8. Roc曲线:即接收者操作特征曲线(receiver operating characteristic curve),
   8.1 反映了真阳性率(TPR为Y轴)和假阳性率(1-特异度,FPR为X轴)之间的变化关系。
   8.2 Roc曲线越趋近于左上角,预测结果越准确。

9. auc : Roc曲线与坐标轴之间的面积;
   9.1 反应分类器对样本的排序能力;
   9.2 物理意义上,反映的是正样本的预测结果大于负样本的预测结果的概率。

参考:
阿里云开发社区-混淆矩阵
拉钩教育- 深入学习入门与实践

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值