1.问题
有一维数据:
y = [5023, 5075, 5115, 5100, 5103, 5086, 5098, 5108, 5093, 5105]
要计算这组数据对第一个值的镜像(或者说是倒影) 对应的值。
2.算法
可以先计算每个数据到第一个值的距离,然后每个值再减去对应的2倍距离。
y1 = [x-(2*(x-y[0])) for x in y]
如果是多维数据的话,用torch.cat([y1,y2,y3], dim=1)装起来,然后加个负号就好了。
data = torch.cat([y1,y2,y3], dim=1)
data1 = -data
3.完整代码
import matplotlib.pyplot as plt
y = [5023, 5075, 5115, 5100, 5103, 5086, 5098, 5108, 5093, 5105]
y1 = [x-(2*(x-y[0])) for x in y]
x = [x for x in range(0, len(y))]
print(y, x)
# 画图
plt.plot(x, y, marker='o', mec='r', mfc='w')
plt.plot(x, y1, marker='o', mec='r', mfc='w')
for a, b in zip(x, y):
plt.text(a, b + y[-1] * 0.001, round(b, 4), ha='center', va='bottom', fontsize=9)
for a, b in zip(x, y1):
plt.text(a, b + y1[-1] * 0.001, round(b, 4), ha='center', va='bottom', fontsize=9)
plt.show()