欧拉函数相关数论

欧拉函数

欧拉函数 ϕ(n) ϕ ( n ) 的百度百科定义是:“对正整数n,欧拉函数是小于n 的正整数中与n 互质的数的数目 (ϕ(1)=1) ( ϕ ( 1 ) = 1 ) 。”不如将小于改成小于等于,倒是省去 ϕ(1) ϕ ( 1 ) 的特例。关于欧拉函数的证明,不多赘述(但仍强烈建议先看懂“证明”链接中的文章)。本文侧重于欧拉函数在编程竞赛中的应用,这里只将其中三个知识点提出来(其他公式皆可由这三个公式推导得出):
1.

ϕ(1)=1 ϕ ( 1 ) = 1

2.
ϕ(n)=nir(11pi)n=1rpkiipi ϕ ( n ) = n ∏ i r ( 1 − 1 p i ) 其 中 n = ∏ 1 r p i k i 且 p i 为 质 数

3.
ϕ(ab)=ϕ(a)ϕ(b)(ab) ϕ ( a b ) = ϕ ( a ) ϕ ( b ) ( 积 性 函 数 性 质 , 其 中 a 、 b 互 质 )

素数打表

素数表较常与欧拉函数一同出现,除了一些特殊的数字外,若想要较快地求出某个数字的欧拉函数值,也需要先打出一张质数表来。打出小于n 的所有质数表的基本思想如下:
1. 用visit 数组记录值 i i 是否为合数,若为合数,则visit[i] = true,否则为false。用prime 数组储存素数的值,即所求素数表
2. 将i 2 2 n 遍历,如果当前值为素数(visit 值未被设置为true),则记录该数字到素数表中
3. 对于遍历的任何数字 i i ,都用当前素数表中所有的素数与i 相乘,将乘积的visit 值设为true,表示该值为合数
4. 优化:当 i i 为当前素数表中某个素数的倍数时,跳出第三步的循环。这里需要说明一下,首先素数表中所有的数字为从小到大储存,且i 值也是从小到大遍历,举个例子:当我们遍历到 i=15,prime=5(i%prime=0) i = 15 , p r i m e = 5 ( i % p r i m e = 0 ) 时,若不break,则会将visit[i*prime]=visit[75] 设为true,而往后遍历到 i=25,prime=3 i = 25 , p r i m e = 3 时,会再次把visit[75] 设为true,于是就出现了重复操作,这就是第四步所优化的地方。
第4 步优化的简单证明:
i%primej=0 i % p r i m e j = 0 ,则对于 primej+1 p r i m e j + 1 ,有:

i×primej+1=k×primej×primej+1=i×primej i × p r i m e j + 1 = k × p r i m e j × p r i m e j + 1 = i ′ × p r i m e j

primej+1>primej p r i m e j + 1 > p r i m e j 可知: i>i i ′ > i ,由遍历次序可知, i i ′ 将随着大循环的i++ 在后面被遍历到,所以若出现 i%primej=0 i % p r i m e j = 0 的情况,就不必再往后遍历 primej+1 p r i m e j + 1 了,若觉得证明不太容易理解,可以先看代码再对照代码进行理解。

代码:

const int maxn = 10000 + 100;
int cnt;
int prime[maxn];
bool visit[maxn];
// n 表示要打的素数表最大值,cnt 表示素数的总数
void Prime(int n) {
    cnt = 0;
    memset(visit, 0, sizeof(visit));
    for(int i = 2; i < n; ++i) {
        if(!visit[i]) prime[cnt++] = i;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            visit[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
}

n n 求欧拉函数

要求欧拉函数,根据公式,就需要求出 n n 的所有素数因子,庆幸我们有这样一条性质:大于n 的素数因子最多只有 1 1 个,因此我们只需要从2 找到 n n ,边找边除,就能得到最后一个素数。
证明:如果存在两个大于 n n 的素数因子,设分别为 a a b,则有 a>n,b>n,n=abc>nc a > n , b > n , n = a b c > n c ,其中 c1 c ≥ 1 ,故矛盾。
由于可以在 n n 时间复杂度内求得 n n 的欧拉函数,根据一般题目的内存限制,我们可以打的素数表大小大概在106 左右,因此用这种方法,我们可以求得 n1012 n ≈ 10 12 大小的欧拉函数。

代码

int euler(int n) {
    if(n == 1) return 1;
    int ret = n;
    for(int j = 0; j < cnt && prime[j] * prime[j] <= n; ++j) {
        if(n % prime[j] == 0) {
            ret = ret / prime[j] * (prime[j] - 1);
            while(n % prime[j] == 0) n /= prime[j];
        }
    }
    if(n > 1) ret = ret / n * (n - 1);
    return ret;
}

欧拉函数打表

除了打完素数表后根据公式求任意值的欧拉函数,其实也可在给素数打表的同时求出数字 i i 的欧拉函数值,相对于上面一种方法的限制,即不能求太大数字的欧拉函数,只能在内存限制范围内打表。
欧拉函数打表主要根据以下几点:
1. ϕ(1)=1
2. 若 n n 为素数,则ϕ(n)=n1,显然对于任何素数 n n ,所有小于它的正整数都与其互质。素数只有自己一个素数因子,代入上面的欧拉函数也可计算得n1
3. 若 i%prime=0 i % p r i m e = 0 n=i×prime n = i × p r i m e ,则

ϕ(n)=ϕ(k×prime2)=ϕ(k)ϕ(prime2)=ϕ(k)×prime2(11prime)=ϕ(k)ϕ(prime)×prime=ϕ(k×prime)×prime=ϕ(i)×prime ϕ ( n ) = ϕ ( k × p r i m e 2 ) = ϕ ( k ) ϕ ( p r i m e 2 ) = ϕ ( k ) × p r i m e 2 ( 1 − 1 p r i m e ) = ϕ ( k ) ϕ ( p r i m e ) × p r i m e = ϕ ( k × p r i m e ) × p r i m e = ϕ ( i ) × p r i m e

4. 若 n=i×prime n = i × p r i m e ,则
ϕ(n)=ϕ(i×prime)=ϕ(i)ϕ(prime)=ϕ(i)×(prime1) ϕ ( n ) = ϕ ( i × p r i m e ) = ϕ ( i ) ϕ ( p r i m e ) = ϕ ( i ) × ( p r i m e − 1 )

由以上几点,就可以在打素数表的同时,打欧拉函数表了。

代码

const int maxn = 10000 + 100;
int cnt;
int prime[maxn], phi[maxn];
bool visit[maxn];
// n 表示要打的素数表最大值,cnt 表示素数的总数
void Prime(int n) {
    cnt = 0;
    phi[1] = 1;
    memset(visit, 0, sizeof(visit));
    for(int i = 2; i < n; ++i) {
        if(!visit[i]) prime[cnt++] = i, phi[i] = i - 1;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            int k = i * prime[j];
            visit[k] = true;
            if(i % prime[j] == 0) {phi[k] = phi[i] * prime[j]; break;}
            else phi[k] = phi[i] * (prime[j] - 1);
        }
    }
}

欧拉函数习题

基础知识部分完毕,下面是一些相关习题。

The Euler function

题目链接

HDU 2824: The Euler function

题意

多组数据,输入 a,b a , b ,输出 bi=aϕ(i) ∑ i = a b ϕ ( i ) 的值,其中 (2<a<b<3000000) ( 2 < a < b < 3000000 )

题解

打表暴力加,注意一下用long long,前缀和预处理会爆空间

过题代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

#define LL long long
#define For(i, a, b) for(int i = (a), _##i = (b); i <= _##i; ++i)
#define Rof(i, a, b) for(int i = (a), _##i = (b); i >= _##i; --i)
#define Mem(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(b))

const int maxn = 3000000 + 100;
int cnt, a, b;
LL ans;
int prime[maxn], phi[maxn];
bool visit[maxn];

void Prime(int n) {
    cnt = 0;
    phi[1] = 1;
    Mem(visit, 0);
    For(i, 2, n - 1) {
        if(!visit[i]) prime[cnt++] = i, phi[i] = i - 1;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            int k = i * prime[j];
            visit[k] = true;
            if(i % prime[j] == 0) {phi[k] = phi[i] * prime[j]; break;}
            else phi[k] = phi[i] * (prime[j] - 1);
        }
    }
}

int main() {
    #ifdef LOCAL
    freopen("test.txt", "r", stdin);
    #endif // LOCAL
    ios::sync_with_stdio(false);

    Prime(maxn - 50);
    while(scanf("%d%d", &a, &b) != EOF) {
        ans = 0;
        For(i, a, b) ans += phi[i];
        printf("%I64d\n", ans);
    }

    return 0;
}

Happy 2006

题目链接

POJ 2773: Happy 2006

题意

多组数据,输入 m,K m , K ,输出第 K K 小的与m 互质的数,其中 (1m106),(1K108) ( 1 ≤ m ≤ 10 6 ) , ( 1 ≤ K ≤ 10 8 )

题解

gcd(m,n)=gcd(m,n+t×m)(tZ) g c d ( m , n ) = g c d ( m , n + t × m ) ( t ∈ Z ) 可得,所有与 m m 互质(gcd(m,n)=1) 的数以 m m 为周期变化,所以只需要求得这个周期(ϕ(m)),再暴力在周期内搜一遍即可,要注意取膜等于0 的情况。

过题代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

#define LL long long
#define For(i, a, b) for(int i = (a), _##i = (b); i <= _##i; ++i)
#define Rof(i, a, b) for(int i = (a), _##i = (b); i >= _##i; --i)
#define Mem(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(b))

const int maxn = 3000000 + 100;
int cnt, m, k, ans, time;
int prime[maxn], phi[maxn];
bool visit[maxn];

void Prime(int n) {
    cnt = 0;
    phi[1] = 1;
    Mem(visit, 0);
    For(i, 2, n - 1) {
        if(!visit[i]) prime[cnt++] = i, phi[i] = i - 1;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            int k = i * prime[j];
            visit[k] = true;
            if(i % prime[j] == 0) {phi[k] = phi[i] * prime[j]; break;}
            else phi[k] = phi[i] * (prime[j] - 1);
        }
    }
}

int gcd(int a, int b) {
    if(b == 0) return a;
    return gcd(b, a % b);
}

int main() {
    #ifdef LOCAL
    freopen("test.txt", "r", stdin);
    #endif // LOCAL
    ios::sync_with_stdio(false);

    Prime(maxn - 50);
    while(scanf("%d%d", &m, &k) != EOF) {
        time = k / phi[m];
        k %= phi[m];
        if(k == 0) k = phi[m],  --time;
        For(i, 1, m) {
            if(gcd(i, m) == 1) {
                --k;
            }
            if(k == 0) {
                ans = i;
                break;
            }
        }
        printf("%d\n", ans + time * m);
    }


    return 0;
}

Divisors

题目链接

POJ 2992: Divisors

题意

多组数据,输入 n,k n , k ,输出 Ckn C n k 的约数个数,其中 (0kn431) ( 0 ≤ k ≤ n ≤ 431 ) , 且计算结果在long long 范围内。

题解

首先要求任意数字 n n 的约数个数,要先将n 分解质因数为 n=ripkii n = ∏ i r p i k i ,可以知道 n n 的所有约数都由这些数字组合相乘得到,任意质因数pi 都可以从 0ki 0 − k i 中任取一个次数去乘,因此 n n 的约数个数即ir(1+ki)
其次, Ckn=ni=nk+1ik! C n k = ∏ i = n − k + 1 n i k ! ,所以可以将从 1431 1 − 431 所有数字的质因数字数表打出来,对所有质因数做前缀和(因为 Ckn C n k 的分子分母都由连续数字相乘),每次询问相减即可。

过题代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

#define LL long long
#define For(i, a, b) for(int i = (a), _##i = (b); i <= _##i; ++i)
#define Rof(i, a, b) for(int i = (a), _##i = (b); i >= _##i; --i)
#define Mem(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(b))

const int maxn = 450 + 100;
int cnt, n, k;
int prime[maxn];
LL sum[maxn][100], fac[maxn][100];
bool visit[maxn];

void Prime(int n) {
    cnt = 0;
    Mem(visit, 0);
    For(i, 2, n - 1) {
        if(!visit[i]) prime[cnt++] = i;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            visit[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
}

void Cal_fac(int n) {
    For(i, 1, n) {
        int num = i;
        For(j, 0, cnt - 1) {
            while(num % prime[j] == 0) {
                ++fac[i][j];
                num /= prime[j];
            }
        }
    }
    For(i, 1, n) {
        For(j, 0, cnt - 1) {
            sum[i][j] = sum[i - 1][j] + fac[i][j];
        }
    }
}


int main() {
    #ifdef LOCAL
    freopen("test.txt", "r", stdin);
    #endif // LOCAL
    ios::sync_with_stdio(false);

    Prime(maxn - 50);
    Cal_fac(maxn - 50);

    while(scanf("%d%d", &n, &k) != EOF) {
        LL ans = 1;
        For(i, 0, cnt - 1) {
            ans *= (1 + sum[n][i] - sum[n - k][i] - sum[k][i]);
        }
        printf("%I64d\n", ans);
    }

    return 0;
}

Soldier and Number Game

题目链接

CodeForces 546D: Soldier and Number Game

题意

T T 组数据,对于每一组数据的ab,求 a!b! a ! b ! 的素数因子个数。 (1T106)(1ba5×106) ( 1 ≤ T ≤ 10 6 ) ( 1 ≤ b ≤ a ≤ 5 × 10 6 )

题解

对于 106 10 6 组测试数据,肯定需要预处理,由于阶乘是连续数字相乘,所以可以预处理出从 1 1 n 中所有素数因子个数和,即 n! n ! 的素数因子个数,最后相减即可。
打表可得,在 5×106 5 × 10 6 范围内的素数大概有 34000 34000 个素数,如果对 15×106 1 − 5 × 10 6 内所有数字 n n 依次打表,计算量大概在15×1010,显然预处理会超时,需要对预处理进行优化。
这里只需要用到一点:如果 n n 能被素数prime 整除,则 (n,n+prime) ( n , n + p r i m e ) 之间所有数字都不能被 prime p r i m e 整除,这样便可通过前一个能够被 prime p r i m e 整除的数直接找到下一个能够被其整除的数,步长将随着 prime p r i m e 的增大而增大,而时间复杂度为 n2+n3+n5+n7+nn=O(nlogn) n 2 + n 3 + n 5 + n 7 + ⋯ n n = O ( n log ⁡ n ) (最后一个素数若大于 n n 可直接求出)。

过题代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

#define LL long long
#define For(i, a, b) for(int i = (a), _##i = (b); i <= _##i; ++i)
#define Rof(i, a, b) for(int i = (a), _##i = (b); i >= _##i; --i)
#define Mem(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(b))

const int maxn = 5000000 + 100;
const int sq = sqrt((double)maxn);
int cnt;
int prime[maxn], phi[maxn];
LL num[maxn];
int tmp[maxn];
LL sum[maxn];
bool visit[maxn];

int read() {
    char ch;
    int ret = 0;
    do {
        ch = getchar();
    } while(ch < '0' || ch > '9');
    do {
        ret = ret * 10 + ch - '0';
        ch = getchar();
    } while(ch >= '0' && ch <= '9');
    return ret;
}

char str[20];
void write(LL n) {
    if(n == 0) {putchar('0'); return ;}
    int scnt = 0;
    while(n != 0) {
        str[++scnt] = n % 10 + '0';
        n /= 10;
    }
    while(scnt != 0) putchar(str[scnt--]);
}

void Prime(int n) {
    cnt = 0;
    phi[1] = 1;
    Mem(visit, 0);
    For(i, 2, n - 1) {
        if(!visit[i]) prime[cnt++] = i, phi[i] = i - 1;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            int k = i * prime[j];
            visit[k] = true;
            if(i % prime[j] == 0) {phi[k] = phi[i] * prime[j]; break;}
            else phi[k] = phi[i] * (prime[j] - 1);
        }
    }
}

int main() {
    #ifdef LOCAL
    freopen("test.txt", "r", stdin);
    #endif // LOCAL
    ios::sync_with_stdio(false);

    Prime(sq);
    For(i, 1, maxn) tmp[i] = i;
    For(i, 0, cnt - 1) {
        for(int j = prime[i]; j <= maxn; j += prime[i]) {
            while(tmp[j] % prime[i] == 0) {
                ++num[j];
                tmp[j] /= prime[i];
            }
        }
    }
    For(j, 2, maxn - 1) {
        if(tmp[j] != 1) ++num[j];
        sum[j] = sum[j - 1] + num[j];
    }
    int t, a, b;
    scanf("%d", &t);
    while(t--) {
        a = read(); b = read();
        write(sum[a] - sum[b]);
        putchar('\n');
    }

    return 0;
}

Longge’s problem

题目链接

POJ 2480: Longge’s problem

题意

多组输入,对于每一个输入数字 N N ,求出iNgcd(i,N)

题解

首先:

gcd(t,ab)=gcd(t,a)gcd(t,b)tZ,gcd(a,b)=1 g c d ( t , a b ) = g c d ( t , a ) g c d ( t , b ) t ∈ Z ∗ , g c d ( a , b ) = 1

由于 ab a b 互质,所以 a a b 与任意正整数的最大公约数必然没有交集,上式成立,故 gcd(t,n) g c d ( t , n ) 是积性函数,由积性函数性质可得:积性函数的和也是积性的,故 nigcd(i,n) ∑ i n g c d ( i , n ) 也是积性函数。所以,若将 n n 分解为
n=irpiki(pi)

ingcd(i,n)=ir(jpigcd(j,pkii)) ∑ i n g c d ( i , n ) = ∏ i r ( ∑ j p i g c d ( j , p i k i ) )

其次,若 gcd(a,b)=c g c d ( a , b ) = c ,则 gcd(ac,bc)=1 g c d ( a c , b c ) = 1 ,所以与 a a 的公约数值为c 的数字个数等于与 ac a c 互质的数字个数相等,可以得到:
ingcd(i,n)=imfaciϕ(nfaci)facinmn ∑ i n g c d ( i , n ) = ∑ i m f a c i ϕ ( n f a c i ) f a c i 为 n 的 约 数 , m 为 n 的 约 数 个 数

代入上式继续推导可得:
ingcd(i,n)=ir(jmfacjϕ(pkiifacj)) ∑ i n g c d ( i , n ) = ∏ i r ( ∑ j m f a c j ϕ ( p i k i f a c j ) )

由于素数的 k k 次幂的所有约数分别为该素数的0k 次幂,所以
ingcd(i,n)=ir(jkipjiϕ(pkiipji))=ir(jkipjiϕ(pkiji)) ∑ i n g c d ( i , n ) = ∏ i r ( ∑ j k i p i j ϕ ( p i k i p i j ) ) = ∏ i r ( ∑ j k i p i j ϕ ( p i k i − j ) )

若推导到这里便开始写程序,容易超时,还需要一步计算:若 n=primek n = p r i m e k ,则 ϕ(n)=primek(11prime)=primekprimek1 ϕ ( n ) = p r i m e k ( 1 − 1 p r i m e ) = p r i m e k − p r i m e k − 1 ,所以:
ingcd(i,n)=ir(jki1pji(pkijipkij1i)+pkii)=ir(jki1(pkiipki1i)+pkii)=ir(ki(pkiipki1i)+pkii) ∑ i n g c d ( i , n ) = ∏ i r ( ∑ j k i − 1 p i j ( p i k i − j − p i k i − j − 1 ) + p i k i ) = ∏ i r ( ∑ j k i − 1 ( p i k i − p i k i − 1 ) + p i k i ) = ∏ i r ( k i ( p i k i − p i k i − 1 ) + p i k i )

注意这里 i i 1 r r ,而j 0 0 ki,最后当 j=ki j = k i 时, pkiiϕ(1) p i k i ϕ ( 1 ) ,而 ϕ(1) ϕ ( 1 ) 的值为特判,不能由欧拉公式直接计算得到,故应单独分离出来进行计算。

过题代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <cfloat>
#include <cstring>
#include <string>
#include <vector>
#include <list>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
using namespace std;

#define LL long long
#define For(i, a, b) for(int i = (a), _##i = (b); i <= _##i; ++i)
#define Rof(i, a, b) for(int i = (a), _##i = (b); i >= _##i; --i)
#define Mem(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(b))

const int maxn = 100000 + 100;
int cnt, fac;
LL ans, n;
int prime[maxn];
bool visit[maxn];

void Prime(int n) {
    cnt = 0;
    Mem(visit, 0);
    For(i, 2, n - 1) {
        if(!visit[i]) prime[cnt++] = i;
        for(int j = 0; j < cnt && i * prime[j] < n; ++j) {
            visit[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
}

int main() {
    #ifdef LOCAL
    freopen("test.txt", "r", stdin);
    #endif // LOCAL
    ios::sync_with_stdio(false);

    Prime(maxn - 50);
    while(scanf("%I64d", &n) != EOF) {
        ans = 1;
        int sq = sqrt((double)n);
        for(int i = 0; prime[i] <= sq; ++i) {
            fac = 0;
            while(n % prime[i] == 0) {
                ++fac;
                n /= prime[i];
            }
            ans *= fac * (pow(prime[i], fac) - pow(prime[i], fac - 1)) + pow(prime[i], fac);
        }
        if(n != 1) ans *= 2 * n - 1;
        printf("%I64d\n", ans);
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值