yolov3中的Anchor Box理解

本文深入解析YOLOv3中的锚框(anchor box)概念,介绍如何通过k-means聚类选择最优锚框数量,以及不同尺度特征图上锚框的应用策略。探讨了锚框在目标检测中的作用及与真实框匹配原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先可以把anchor理解为:多尺度滑动窗口。

传统的检测过程是:

1、生成图像金字塔,因为待检测的物体的scale是变化的。

2、用滑动窗口在图片的特征金字塔上面滚动生成很多候选区域。

3、各种特征提取hog和分类器svm来对上面产生的候选区域中的图片信息来分类。

4、NMS非极大值抑制得到最后的结果。

但由于cnn具有强大的提取特征的能力,可以替代第三步,但第一第二步独立于cnn之外的,需要大量循环,速度也限制了,因此要更好的定位,需要更多的scale和radio不同窗口,但又增加了时间。而窗口滑动的时候,本质就是遍历像素的过程,因此直接为每个像素分配不同的尺度和比例的窗口矩形,它们的中心都是其所属的像素点。对于长度和比例的分配们可以根据标注图像信息通过k-means聚类得到。而每个像素分配几个不同长度和比例的窗口举行就是Anchor。一般模型的anchor非常多,因此可以看这些anchor与给定矩形的IOU是否满足条件来决定是否是所要的框。

IOU=area of overlap/area of union

yolov3中的Anchor Box理解

首先,anchor box就是从训练集中真实框(ground truth)中统计或聚类得到的几个不同尺寸的框。避免模型在训练的时候盲目的找,有助于模型快速收敛。假设每个网格对应k个anchor,也就是模型在训练的时候,它只是会在每一个网格附近找出这k种形状,不会找其他的。

anchor其实就是对预测的对象范围进行约束,并加入了尺寸先验经验,从而实现多尺度学习的目的。

选择anchor的形状。

yolov3使用k-means算法在训练集中所有样本的真实框(ground truth)中聚类,得到具有代表性形状的宽高(维度聚类)。但是具体几个anchor才是最合适的,作者采用实验的方式,分别用不同数量的anchor应用到模型,然后找出最优的在模型的复杂度和高召回率之间这种的那组anchor box,最终的出9个anchor box最佳。

 

而对于yolov3来说,输出为3个尺度的特征图,分别为13×13、26×26、52×52,对应着9个anchor,每个尺度均分3个anchor。

最小的13×13的特征图上由于其感受野最大,应该使用大的anchor(116x90),(156x198),(373x326),这几个坐标是针对原始输入的,即416×416的,因此要除以32把尺度缩放到13×3下使用,适合较大的目标检测。中等的26*26特征图上由于其具有中等感受野故应用中等的anchor box (30x61),(62x45),(59x119),适合检测中等大小的目标。较大的52*52特征图上由于其具有较小的感受野故应用最小的anchor box(10x13),(16x30),(33x23),适合检测较小的目标。具体使用就是每个grid cell都有3个anchor box。

然而究竟是哪个anchor负责匹配它呢?和YOLOv1一样,对于训练图片中的ground truth,若其中心点落在某个cell内,那么该cell内的3个anchor box负责预测它,具体是哪个anchor box预测它,需要在训练中确定,即由那个与ground truth的IOU最大的anchor box预测它,而剩余的2个anchor box不与该ground truth匹配。YOLOv3需要假定每个cell至多含有一个grounth truth,而在实际上基本不会出现多于1个的情况。与ground truth匹配的anchor box计算坐标误差、置信度误差(此时target为1)以及分类误差,而其它的anchor box只计算置信度误差(此时target为0)。
有了平移(tx,ty)和尺度缩放(tw,th)才能让anchor box经过微调与grand truth重合。                                                                  如图,红色框为anchor box,绿色框为Ground Truth,平移+尺度缩放可实线红色框先平移到虚线红色框,然后再缩放到绿色框。边框回归最简单的想法就是通过平移加尺度缩放进行微调       

                   

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

参考这篇文章,写的非常详细:https://blog.csdn.net/qq_34199326/article/details/84109828

<think>好的,用户想了解如何调整YOLOv5模型以降低box_loss。我需要先理解box_loss的含义。根据引用[3],box_loss是衡量模型预测边界与真实之间差异的指标,通常使用CIoU或GIoU损失函数。如果box_loss过高,说明模型在定位目标的位置和大小上存在问题。 首先,用户可能需要调整超参数。引用[2]提到,YOLOv5的超参数配置文件在data/hyps目录下,比如hyp.scratch-low.yaml。这里的学习率(lr0)、权重衰减(weight_decay)和损失函数的权重(box_loss_gain)是关键参数。降低学习率可能有助于稳定训练,而调整box_loss_gain可以直接影响模型对边界的优化力度。 其次,数据增强策略。过多的数据增强可能干扰模型学习边界的位置,比如mosaic增强和旋转。根据引用[3],如果损失不收敛,可以检查数据增强策略。适当减少这些增强方法,或者在训练后期关闭mosaic,可能帮助模型更专注于定位。 模型结构方面,用户可能使用的是较大的模型,如YOLOv5x,但如果显存不足(引用[3]建议减小模型尺寸),换成较小的版本如YOLOv5s可能更有效,同时调整检测头的深度和宽度。 另外,检查数据集质量也很重要。错误的标注或尺寸不一的锚anchor size)可能导致box_loss高。用户需要确保标注准确,并重新计算锚以适应自己的数据集。 最后,损失函数的选择。YOLOv5默认使用CIoU,切换到GIoU或DIoU可能在某些情况下表现更好,尤其是在边界重叠较少的情况下。此外,多尺度训练(multi-scale training)能提升模型对不同尺寸目标的检测能力,从而降低box_loss。 需要提醒用户逐步调整参数,每次只改一个,方便观察效果。同时监控训练日志中的box_loss变化,结合其他指标如mAP来全面评估模型表现。</think>以下是调整YOLOv5模型以降低$box\_loss$的8个关键方法,分步骤说明: 1. **调整超参数配置文件** - 修改`data/hyps/hyp.scratch-low.yaml`中的参数组合 - 核心参数调整示例: ```yaml lr0: 0.01 → 0.005 # 初始学习率 weight_decay: 0.0005 → 0.0003 # 正则化强度 box_loss_gain: 0.05 → 0.1 # 提高边界损失权重[^2] ``` 2. **优化数据增强策略** - 减少干扰定位的增强: ```yaml mosaic: 1.0 → 0.5 # 降低马赛克增强概率 degrees: 0.0 → 10.0 # 限制旋转角度范围 translate: 0.2 → 0.1 # 减少平移幅度 ``` 在训练后期(如最后10个epoch)关闭mosaic增强可提升定位精度[^3] 3. **调整模型结构参数** - 修改`models/yolov5s.yaml`: ```yaml depth_multiple: 0.33 → 0.50 # 增加backbone深度 width_multiple: 0.50 → 0.75 # 加宽检测头通道数 ``` 4. **锚(anchor)优化** - 使用自定义锚: ```bash python utils/autoanchor.py --cfg models/yolov5s.yaml --img 640 --tolerance 3.0 ``` 建议在数据分布差异大时重新计算锚 5. **损失函数选择** - 修改`utils/loss.py`中的边界损失: ```python # 将CIoU替换为GIoU bbox_loss = 1.0 - torch.diag(generalized_box_iou(pred_boxes, target_boxes)) ``` 6. **多尺度训练增强** - 在训练命令添加: ```bash --multi-scale --img-size 640 # 默认范围(640*0.5, 640*1.5) ``` 可提升模型对不同尺度目标的定位能力 7. **梯度累积优化** - 在显存允许时增加: ```bash --accumulate 2 # 累计2个batch的梯度再更新 ``` 配合学习率调整可提升训练稳定性 8. **学习率调度策略** - 在`train.py`中修改调度器: ```python scheduler = CosineLRScheduler(optimizer, t_initial=epochs, lr_min=1e-6) ``` 相比默认的线性衰减更平滑[^1] **实施建议**: 1. 每次只修改一个参数并记录$box\_loss$变化 2. 优先调整学习率和数据增强强度 3. 当$box\_loss$与$cls\_loss$差异大于30%时,需检查标注质量 4. 最终验证应结合mAP50-95指标综合评估
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值