自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

m_buddy的博客

I'll take the blame and send you to death. It's worth sacrificing for all beings.

  • 博客(504)
  • 资源 (16)
  • 收藏
  • 关注

原创 Caffe源码,训练流程分析

1. 前言1.1 Caffe结构简单梳理在之前的文章(Caffe源码整体结构及介绍)中介绍了Caffe中的一些重要的组件:1)Blob 主要用来表示网络中的数据,包括训练数据,网络各层自身的参数(包括权值、偏置以及它们的梯度),网络之间传递的数据都是通过 Blob 来实现的,同时 Blob 数据也支持在 CPU 与 GPU 上存储,能够在两者之间做同步。2)Layer 是对神经网络中各种层...

2019-04-14 22:40:26 787 5

原创 XGBoost参数解释

前言本文中针对XGBoost的参数说明进行部分翻译得来,原文链接。因而本文中只对一些关键参数进行了翻译,且由于本人能力有限,文中难免存在错误的地方,还望指正。以下是大致翻译内容。在运行XGboost之前, 我们必须设置三种类型的参数: 通用参数(general parameters),Booster 参数(booster parameters)和学习目标参数(task parameters...

2018-02-19 20:07:34 12953

原创 BEVDistill:Cross-Modal BEV Distillation for Multi-View 3D Object Detection——论文笔记

介绍:基于相机的BEV感知算法可以从周视图像中获取丰富语义信息,但是缺乏深度信息的,对此一些方法中通过深度估计的形式对这部分缺乏的深度信息进行补充,从而实现网络性能的提升。使用深度估计需要添加对应网络模块和标签数据,也会带来不少的工作量。对此,可以从知识蒸馏的角度从Lidar点云数据中去弥补图像中缺失的信息,这篇文章中检测网络的角度探讨了3D检测下的知识蒸馏(核心在于怎么实现不同模态数据的信息蒸馏),给出从BEV特征dense蒸馏和实例蒸馏的方法。

2023-01-31 00:07:26 24

原创 Time Will Tell:New Outlooks and A Baseline for Temporal Multi-View 3D Object Detection——论文笔记

介绍:汽车的驾驶过程是时变的,则对该场景的处理方法最好也应该具有时间维度引入。这篇文章提出现有BEV感知算法中时序信息信息存在特征粒度较粗(特征图尺寸小)和使用到的时序信息较少(使用到的帧数少)的问题,同时观察到距离车体不同距离下对时序信息的敏感程度是不一样的,距离越远越则需要多帧信息,但是也需要考虑实际机器的资源是有限的。对于上述问题文章提出了分别在高分辨率(在图像特征空间构建cost volume)和低分辨率(在BEV特征空间构建cost volume)分别进行时序信息融合,并且两者相互补全。

2023-01-27 13:53:51 25

原创 STS:Surround-view Temporal Stereo for Multi-view 3D Detection——论文笔记

介绍:这篇文章提出的方法是对LSS中深度估计部分进行改进,其改进的点是在深度估计部分引入立体匹配去估计周视相机下的深度信息,其中立体匹配使用前后视频帧进行构建(可以看作是时序信息的使用,只不过只有两帧信息)。此外,引入DORN中的深度采样策略(SID,Spacing-Increasing Discretization)使得近处的采样点不至于过度稀疏,为了弥补在无纹理下立体匹配失效的情况,同时保留原本LSS中的深度估计模块,将其立体匹配估计出的深度进行融合得到最后更准确地深度表达。

2023-01-27 00:40:20 362 1

原创 MatrixVT:Efficient Multi-Camera to BEV Transformation for 3D Perception——论文笔记

介绍:这篇文章对LSS方法中的瓶颈项进行分析,分别指出其中显存占用问题源自于“lift”操作生成的高维度特征,运行耗时是由于“splat”操作的求和操作,对此文章从矩阵变换的角度对原版的LSS方法进行改进,得到高效BEV特征生成方法MatrixVT。

2023-01-15 19:00:37 326

原创 BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation——论文笔记

介绍:在这篇文章中提出一种Lidar和Camera在BEV空间下实现特征融合的方法,有效利用了图像丰富语义信息和雷达深度信息,构建一个不同模态数据融合的范式。对于图像部分生成BEV特征采用的是LSS的方案,不过这里对“splat”这个操作进行了改进(这个操作在原版实现中比较耗时,距离实际工程化又近了一步),也就是通过GPU多线程的特性直接在不同的深度bins下求和,而不需要累加求和之后再相减,这样便可极大提升运算的效率(文中指出大概快了40倍)。

2023-01-15 15:52:46 46 1

原创 vanishing point detection in autopilot

消失点一种直观的解释是图像中的平行线的交点,也就如下图中路面边界绘制的直线在图像中的交点。这样的点在自动驾驶场景下可以为解析车辆状态提供一些信息,比如较为常规的运用便是用于车辆的pitch角度。在传统方法中会通过如霍夫算子检测图片中的直线,并以直线的方程计算对应的交点。这类方法对场景的要求较为严苛,导致在实际中会引入其它的trick来适应多变的使用场景。基于数据驱动的深度学习方法也可对该问题提供一些解决方法,在这篇文章中将会介绍一些使用深度学习方法实现消失点检测的方法。

2023-01-07 01:02:53 503 1

原创 CFT:Multi-Camera Calibration Free BEV Representation for 3D Object Detection——论文笔记

介绍:在相机数据作为输入的BEV感知算法中很多是需要显式或是隐式使用相机内外参数的,但是相机的参数自标定之后并不是一直保持不变的,这就对依赖相机标定参数的算法代理了麻烦。如何提升模型对相机参数鲁棒性,甚至是如何去掉相机参数成为一中趋势。

2022-12-01 00:15:00 607 1

原创 MapTR:Structured Modeling and Learning for Online Vectorized HD Map Construction——论文笔记

介绍:这篇文章提出了一种向量化高清地图(vectorized HD map)构建的方法,该方法将高清地图中的元素(线条状或是多边形的)构建为由一组点和带方向边的组合。由于点和方向边在起始点未知的情况下其实是能对同一地图元素够成很多种表达的,对此文章对一个元素穷举了其所有可能存在的等效表达并将其运用到的实例匹配中去,这样可以有效避免一些特意场景下的歧义情况(如对象车道中间的分割线或是人行横道的多边形区域 )。

2022-11-27 23:06:13 221

原创 BEV感知PETR-V1和PETR-V2

介绍:这两篇文章提出了以位置编码转换(PETR,position embedding transformation)为基础的BEV感知方法,按照方法中组件不同可将PETR划分为V1和V2版本。

2022-11-24 20:08:51 856 1

原创 《HDMapNet:An Online HD Map Construction and Evaluation Framework》论文笔记

介绍:在这篇文章中提出一种生成向量化高精地图(verctorized HD map)的方案,通过如IMU、GPS、Lidar等传感器数据融合可以生成全局的高精度定位信息,对于局部的信息是通过相机和Lidar实现的,其中最为关键便是行车过程中的车道信息。对于局部信息的获取方法是这篇文章的重点,其通过编码器处理环视图像和Lidar数据,之后将其映射到bev空间并引入时序得到融合信息表达,之后用于预测车道实例。

2022-11-07 01:12:44 654 1

原创 《BEV LaneDet:Fast Lane Detection on BEV Ground》论文笔记

介绍:这篇文章是毫末科技在单目场景下在bev视图下实现车道线检测的方法,其车道线检测的基础方法是源自于bev视图下车道线分割,再通过预测几个附加预测头用于辅助后处理。具体来讲这篇文章的工作可以划分为3点。1)这篇文章将图像坐标下的特征转换为bev坐标下使用的是全连接的形式,也就是直接通过学习的方式得到一个固定相机参数下的转换关系(这是出于实际部署与计算性能的考量),这样就可以不同显式去编码相机参数。同时为了增强特征表达使用了多个尺度的特征。

2022-11-02 00:49:06 436 1

原创 KF、EKF、IEKF、UKF卡尔曼滤波器

对于卡尔曼滤波的直观理解便是对所掌握数据的融合处理,假设手头有两个随机变量,知道其均值和方差,而且均值相同,那么我希望找到一个权重,使得把这两个随机变量组合起来,均值不变,方差减小,从线条上看当然变得平稳了一些,于是被搞工程的人成为滤波。问题是权重如何找呢?简化一下问题,把这两个随机变量都视作服从正态分布的随机变量,这样通过计算可知,权重与它们的方差有关。下一个问题是,往往手头只有一个滤波器,怎么办?可以给系统建模,根据历史信息计算出一个额外的数值来,为了简化问题,认为系统是线性的,那么输入数学模型给出的数

2022-10-01 22:13:34 612 1

原创 《BEVSegFormer:Bird’s Eye View Semantic Segmentation From Arbitrary Camera Rigs》论文笔记

介绍:这篇文章构建bev特征是将bev grid作为query通过transformer完成的,同样为了减少计算量也使用了deformable attention操作。不过有一点是跟别的方法不一样的,那就是这篇文章的方法完全没有使用任何相机标定信息,全是通过数据驱动参数学习的形式,但是这样带来的问题是收敛速度会比较慢一点。此外,对于CNN网络部分使用self-deformable attention实现特征优化,以生成表达能力更好的bev特征。

2022-09-16 00:24:37 159

原创 《GKT:Efficient and Robust 2D-to-BEV Representation Learning via Geometry-guided Kernel Transformer》

介绍:这篇文章介绍了一种基于几何先验在图像特征中寻找reference points,同时在该reference points处通过预先设置窗口抠取图像特征,并在此基础上使用attention操作实现特征优化,从而获取bev特征的方法。上述通过几何先验寻找reference points的方法可以通过look up table实现加速,这样整体网络的计算耗时就相对较小,可以跑到很高的帧率。对于车辆行驶过程中存在抖动的情况,文中提出了一种扰动机制添加到训练过程中,使得网络对扰动具有一定鲁棒性。

2022-09-15 00:44:55 703

原创 《PersFormer:3D Lane Detection via Perspective Transformer and the OpenLane Benchmark》论文笔记

介绍:在2D场景下检测得到的车道线在下游任务中会将其转换到bev空间下,但车辆在行驶过程中yaw和pitch是会存在一定程度偏移的,也就导致了bev空间下的车道线会出现交汇和发散的情况。对于这样的问题一种方案是通过姿态估计算法解算更准确的位姿,另外一种便是将其直接在bev空间下完成检测任务,这篇文章的方法属于后者。在这篇文章中建立2D bev空间到前视图像特征的映射关系,并通过该关系构建bev特征,并在bev特征上完成车道线预测,从而避免了车道线空间转换带来的问题。

2022-09-12 20:43:53 286

原创 《A Simple Baseline for BEV Perception Without LiDAR》论文笔记

介绍:在这篇文章中提出了一种特别简单但效果不错的bev特征提取方法,也就是通过在构建的bev grid中向图像特征进行反向投影,并在投影点处对图像特征进行双线性插值采样得到图像模态下的bev特征。同时对于lidar和radar这些其它模态的传感器信息输入(若有),直接在编码之后与之前bev特征进行concat操作融合,以此来构建多模态bev特征。......

2022-08-29 01:16:55 935

原创 《SegFormer:Simple and Efficient Design for Semantic Segmentation with Transformers》论文笔记

介绍:这篇文章提出的分割方法是基于transformer结构构建的,不过这里使用到的transformer是针对分割任务在patch merge、self-attention和FFN进行了改进,使其更加适合分割任务(无需position-encoding,测试图片的尺寸带来的影响更小)对上下文语义信息和局部细节信息的需求并且更加整体模型轻量化,同时得益于transformer强大的上下文感知能力使得对于解码器只使用简单的几层全连接便可达到更好的分割性能。

2022-08-20 23:59:34 619

原创 《Translating Images into Maps》论文笔记

介绍:在这篇文章中提出了一种新的bev特征抽取方法,其思想是在图像特征的w维度上进行展开,对每个在w维度上展开的特征通过非线性映射的关系建立其到对应bev区域的映射,只不过这里的bev上的映射区域是从原点出发的一个扇形区域(文章也将其称之为polar ray),也就通过这样类似扫描的方式建立起w维度展开序列特征到bev特征的对应关系。此外,对于最终映射bev特征会根据距离的远近划分到不同stage的图像特征上去,也就是说对于越远的的地方使用的图像特征分辨率也就越大。

2022-08-20 01:43:22 1085

原创 《RCLane:Relay Chain Prediction for Lane Detection》论文笔记

介绍:在这篇文章中介绍了一种新的车道线描述范式(基于点的车道线建模),也就是通过关键点(文章对应称之为relay points)和关键点之间的关系场构建推理出车道线。具体为文章通过segformer实现车道线二值分割得到分割结果SSS,并同时通过不同的head预测TTT(transfer map)和DDD(distance map),之后在SSS上做point-nms实现车道线上点的确立,以这些点为起点结合DDD和TTT推理出整条车道线。......

2022-08-11 00:52:03 533

原创 BEVFormer 论文笔记

参考代码:BEVFormerpaper:BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers在文章的bev特征提取方案中需要解决的是bev grid(3D)在多视图图像中的空间索引,以及当前帧bev特征与之前帧中bev特征的关联,也就是下图中展示的spatial和temporal维度信息如何去索引:对于spatial维度上的特征索引,可以通过

2022-07-07 02:01:06 1373 2

原创 《Cross-view Transformers for real-time Map-view Semantic Segmentation》论文笔记

参考代码:cross_view_transformers这篇文章提出了基于transformer的bev特征提取网络(对于2D的bev),对于bev下的queries会通过加上map-view embedding进行refine得到最终queries。同样在多视图特征(由CNN网络得到)上也会添加camera-view的embedding进行refine得到key。同时为了感知道路的3D位置几何关系还对相机位置进行embedding(代码中为减去操作),并与上述的两种embedding进行关联。最后原多视图

2022-07-01 01:29:33 1086 3

原创 《Feature-metric Loss for Self-supervised Learning of Depth and Egomotion》论文笔记

参考代码:FeatDepth在自监督深度估计任务中是以光度重构误差作为损失,但是光度重构误差最小时却不一定代表真实深度误差最小,特别是在无纹理区域上,这样的约束经常导致错误的深度估计结果。同时为了减少深度预测错误带来的不连续问题,通常会引入平滑约束,这样会导致在一些深度平面交汇处出现模糊的情况。为了使得重构误差中的单个像素更加具有辨别能力,文章提出了feature metric loss,也就是在特征图的维度实现重建最小化。其中运用到的特征图提取网络来自于自监督的自编码器。除了自编码器使用的重建损失外,还使

2022-06-19 15:53:51 282

原创 《Self-Supervised Monocular Scene Flow Estimation》论文笔记

参考代码:self-mono-sf在这篇文章中将单目深度估计与3D场景流组合起来进行预测,并将这两个任务互为补充构建约束表达用于监督。通过双目图像对、光流遮挡掩膜计算、3D空间点约束有效处理自监督过程中存在的问题(如scale问题),文章算法的预测效果见下图所示:文章方法的整体pipeline见下图所示:文章的方法的主体架构是来自于双目匹配网络PWC-Net的,不同点是同时估计3D场景流和单目深度信息,并且其中的场景流不是估计的残差而是在每个level都估计完整场景流。另外一个不同点是采用自监督的形式

2022-06-16 00:51:54 249

原创 《CREStereo:Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation》论文笔记

参考代码:CREStereo1. 概述介绍:双目立体匹配在像Middlebury数据上已经取得了不错的效果,但是将训练得到的匹配模型应用到实际场景下时输出效果会出现较大退化。这是因为实际运用场景情况会更加复杂,比如纤细物体的视差估计、图像矫正不够理想、双目相机的模型一致性存在问题以及多样的困难场景。这篇文章对于实际场景中存在的问题提出了一种合成数据、真实数据联合训练的多层次迭代优化双目视差估计算法加以解决,文章的主要贡献点可以总结为如下几点:网络结构上:提出AGCL(Adaptive Group

2022-05-28 23:04:13 521 2

原创 《CLRNet:Cross Layer Refinement Network for Lane Detection》论文笔记

参考代码:CLRNet1. 概述介绍:车道线检测任务是一种高低层次信息都依赖的任务,在CNN网络的高层次特征具有较强的抽象表达能力,可以更加准确判别是否为车道线。而在CNN网络的低层次特征中包含丰富输入图像纹理信息,可以帮助车道线进行更精准定位。而在这篇文章中提出了一种级联优化(从高层次的特征到低层次的特征)的车道线检测算法,极大限度利用了高低维度的特征去优化车道线在高分辨率下的预测准确度。不同与之前的LaneeATT中直接特征index的方案,这篇文章中提出了基于双线性采样的线型RoI提取算子(RO

2022-04-29 01:21:58 3392

原创 《NeW CRFs:Neural Window Fully-connected CRFs for Monocular Depth Estimation》论文笔记

参考代码:NeWCRFs1. 概述介绍:在这篇文章中对单目有监督深度估计算法提出了新的解码单元,该解码单元设计的灵感源自于CRFs(Conditional Random Fields)和Swin-Transformer。首先,在该解码单元中在local-window(文中也将其称之为N∗NN*NN∗N个patch的组合)中计算CRFs,这样可以显著减少因全局CRFs带来的计算量巨大问题,这是基于深度本身也存在一定的局部信息依赖性,同时也引入shift-window用于关联不同的local-window

2022-04-26 00:08:25 3046

原创 《Revisiting Self-Supervised Monocular Depth Estimation》论文笔记

参考代码:None1. 概述介绍:回顾前几年的一些自监督型深度估计算法,它们都是从不同的角度对自监督深度估计方法进行改进。总结这些算法中对自监督深度估计的改进idea,发现这些算法有的是为了解决场景光照变化对深度估计稳定性的影响;有的是对相机运动下场景中物体遮挡运动进行建模,从而减少对于前期假设先验的违背的影响。而这些改进的idea它们的来源是不同的文章,那么它们组合起来是否能达到比原方法更好的效果呢?或者更进一步怎么将这些idea进行有机组合才能得到最优的优化效果?这篇文章算是对这些问题的初步探究,

2022-04-14 01:57:32 2461

原创 《HR-Depth:High Resolution Self-Supervised Monocular Depth Estimation》论文笔记

参考代码:HR-Depth1. 概述介绍:这篇文章研究的是如何在自监督场景下预测得到细节更加丰富的深度结果,在现有的自监督深度估计网络中往往是通过增大输入图像尺寸、3D卷积(如,PackNet-SFM)或是分辨率通道编码(如,nn.PixelShuffle())的方式。这篇文章比较系统探究了自监督深度估计中影响深度估计效果的原因,在文章中将其归纳为两点原因:语义信息与空间信息的不足,它俩分别侧重描述的是物体的类别与边界。对此文章提出了两点改进的点:1)对原本shortcut连接进行优化,获取更好的高

2022-04-04 00:44:13 674

原创 《CamLessMonoDepth:Monocular Depth Estimation with Unknown Camera Parameters》论文笔记

参考代码:None1. 概述介绍:在之前的一些自监督深度估计算法中,往往需要知道相机的内参数作为预先输入。在某些实际场景下为了获得模型对场景的泛化能力,需要有效利用网络上的视频资源,但是其内参是各不相同的。为了使得这些数据能够被有效利用,一种直接的方法便是对相机内参也采用估计的形式得到,具体就是在位姿网络上添加对内参的估计,并参与到整个自监督网络中。这篇文章的工作正是验证该方法的可行性,并对深度估计的解码器部分使用“学习型上采样”进行优化,使得估计出的结果更加精准。PS:文章的方法核心在于位姿估计

2022-04-03 01:26:19 179

原创 《Sparse R-CNN:End-to-End Object Detection with Learnable Proposals》论文笔记

参考代码:SparseR-CNN1. 概述介绍:这篇文章在目标检测领域中提出了一种比较新颖的思路

2022-04-01 01:07:01 208

原创 《Rethinking Efficient Lane Detection via Curve Modeling》论文笔记

参考代码:pytorch-auto-drive1. 概述介绍:在这篇文章中对车道线建模表示进行了讨论和分析,文中指出现有的车道线检测方法大体为:segmentation-based、key_points-based、polynomial-based,当然还有一些其它类型的车道线建模表述方法。在此基础上依靠文章对车道线使用曲线描述函数对车道线进行建模,这样就省去了很多特征解码的相关问题,只需要网络去预测对应曲线的参数就行了。但是在polynomial-based方法中其多项式回归对网络来讲是较难,导致的

2022-03-27 23:19:29 4245

原创 《MonoIndoor:Towards Good Practice of Self-Supervised Monocular Depth Estimation...》论文笔记

参考代码:None1. 概述介绍:经典的自监督深度估计方法已经在KITTI数据集上取得了较为不错的效果,但是在一些室内或是相机能够自由移动(KITTI场景下相机固定在车上)的场景下,现有的经典自监督深度估计算法就出现了问题。这篇文章研究的便是这些场景下的自监督深度估计,在该文章中指出自监督深度估计在这些场景下性能出现较大幅度下降是因为如下两点原因:在这些场景下深度的范围是变化比较大的,特别是在一些室内场景下,随着视角的变化图像中深度的范围会存在较大范围变化。而在KITTI的场景下最远处是天空其深度

2022-03-22 00:31:49 4337

原创 Predict Consistently Depth From Input Video Frames

1. 概述前言: 如今CV在2D领域取得较为不错的结果,随着自动驾驶的兴起越来愈多的注意力被吸引到3D场景下的各式任务中去,其中深度估计算是一种2D到3D的转换桥梁,赋予了2D图像更多信息。在这本篇文章中将会围绕深度估计算法讨论在视频场景下的深度估计任务,并根据本人在该方向上的一些浅薄认知介绍几种适用于视频场景的连续深度估计方法,不足或不全请见谅。单帧图像场景下的深度估计与存在的问题:对于单张图像的深度估计任务在之前的很多文章里面已经介绍过了,如经典监督学习方法Midas和自监督学习方法MonoDep

2022-03-05 23:22:38 2326 1

原创 《DeepVideoMVS:Multi-View Stereo on Video with Recurrent Spatio-Temporal Fusion》论文笔记

参考代码:deep-video-mvs1. 概述介绍:这篇文章针对视频深度估计提出一种基于multi-view的连续深度估计方法,该方法有效利用了spatial和temporal上的特征表达,构建一个可以预测具有深度一致性的视频深度估计pipeline。1)在spatial上的表达:其通过FPN网络从输入图像帧中抽取图像特征,之后在stride=2的特征图上通过预先计算好的相机位姿、内参和深度先验bins构建multi-view上的cost-volume;2)在temporal上的表达:其通过在网

2022-03-03 00:31:33 438

原创 《Unsupervised Scale-consistent Depth ...》论文笔记

这篇笔记是关于3篇文章的合集,它们分别是:《Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video》《Unsupervised Scale-consistent Depth Learning from Video》《Auto-Rectify Network for Unsupervised IndoorDepth Estimation》参考代码:SC-SfMLearner-Release

2022-02-26 01:07:56 588 1

原创 《Enforcing geometric constraints of virtual normal for depth prediction》论文笔记

参考代码:VNL_Monocular_Depth_Prediction1. 概述介绍:这篇文章为深度估计提供了一种新的损失函数形式,在深度估计任务中常见的损失函数多以pixel-wise监督的形式出现,因此这些监督损失函数都是利用像素层面的浅层信息进行监督约束的。这样的浅层次深度信息学习自然不能很好学习到GT深度中的一些细节与结构差异信息,因而这篇文章提出将预测深度通过预先假定的相机内参映射到同一模拟空间尺度(3D空间)上进行比较。这里的比较是通过在模拟空间上进行采样,每个采样包含3个点,并通过文章设

2022-01-24 23:51:23 2513

原创 《MonoRec:Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera》

参考代码:MonoRec1. 概述介绍:这篇提出了一种纯视觉的自监督深度估计算法,它结合现有实例分割、视觉里程计等视觉相关领域中相关技术,构造出这篇提出的MonoRec单目深度估计方法(在做训练的时候也采用了双目的图像作为输入)。在自监督单目深度估计网络中,一个很大的困难便是需要区分哪些像素相对相机参考系是存在运用的,这是文章引入实例分割方法得到的mask去引导并构建MaskModule去解决存在“运动”的目标。对于深度估计部分,这里是使用”运动“目标mask和由输入图片构建的cost volume去

2022-01-19 23:48:39 2665

原创 《LeReS:Learning to Recover 3D Scene Shape from a Single Image》论文笔记

参考代码:AdelaiDepth-LeReS1. 概述介绍:基于单张图像的深度估计网络往往采用scale-shift invariant形式完成深度预测,其是将预测深度和GT深度映射到scale-shift invariant空间,之后再计算loss,自然使用该方法得到的深度在经过点云映射之后是存在扭曲的,这类方法以MiDaS为代表。除scale-shift之外其还存在焦距(focal)上的不确定,因而通过该预测深度构建的三维点云是存在扭曲和尺度不准确问题。对此文章将深度估计问题转换为两个独立功能的子

2022-01-11 01:17:22 1673

图像放大waifu2x算法vs opencv实现

在原来git仓库的基础上对其进行了精简,使用vs2013与opencv3进行包装得到这个demo工程。

2018-06-06

Affine SIFT Demo

这是在论文网站上找到的源码经过OpenCV包装的Demo,提供了类似OpenCV中检测接口,只是作为Demo查看检测效果使用,故功能不够完善。

2018-01-03

WM_COPYDATA消息进程通信

使用WM_COPYDATA实现进程通信的实例

2017-06-06

匿名管道通信例子

使用MFC实现的匿名管道通信的例子

2017-06-05

Windows创建进程例程

其中包含了四种创建进程的方法例子,如WinExec、CreateProcess等

2017-06-04

C#导出到Excel

导出到Excel表格功能,

2017-05-18

一维搜索Matlab代码

这是0.618方法实现的一维搜索Matlab代码,可以按照自己的目标函数进行修改

2017-05-10

AForge录制视频Demo

该Demo实现了基本的AForge录制视频等功能。

2017-03-16

AForge离线文档

在该文档中包含了基本的API的使用说明和示例。

2017-03-16

AForge.NET Framework-2.2.5-(libs only)

这是AForge官网上提供的lib库,直接添加到C#工程就可以使用。

2017-03-16

多帧Dcm图像

里面包含30张彩色的多帧Dcm图像,这里仅供用作开发测试用途

2016-11-28

Opencv调试插件

双击安装该插件,在视图的其它窗口之中打开该插件,就可以在调试中显示cv::Mat图像数据

2016-11-10

Dicom彩色&灰度测试图片

里面包含测试仅限开发测试用途的Dicom图片,灰度图片和彩色图片各一张(彩图有已经转换为BMP的效果图)

2016-11-10

Opencv调试看图插件

2016-10-27

Log4net.dll

强大的日志工具

2016-09-13

何教授去雾算法个人调试版本

这是个人对何教授的文章研读之后,根据自己的想法写的程序,难免有不妥的地方,请看官见谅。实测(cv类型)8UC3和16UC1类型的图像调试通过。

2016-07-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除