自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

m_buddy的博客

背黑锅我来,送死你去,拼全力为众生,牺牲也值得

原创 Caffe源码,训练流程分析

1. 前言 1.1 Caffe结构简单梳理 在之前的文章(Caffe源码整体结构及介绍)中介绍了Caffe中的一些重要的组件: 1)Blob 主要用来表示网络中的数据,包括训练数据,网络各层自身的参数(包括权值、偏置以及它们的梯度),网络之间传递的数据都是通过 Blob 来实现的,同时 Blob ...

2019-04-14 22:40:26 428 0

原创 XGBoost参数解释

前言 本文中针对XGBoost的参数说明进行部分翻译得来,原文链接。因而本文中只对一些关键参数进行了翻译,且由于本人能力有限,文中难免存在错误的地方,还望指正。以下是大致翻译内容。 在运行XGboost之前, 我们必须设置三种类型的参数: 通用参数(general parameters),Bo...

2018-02-19 20:07:34 8096 0

原创 《Siamese FC:Fully-Convolutional Siamese Networks for Object Tracking》论文笔记

参考代码:Pytorch-SiamFC 1. 概述 导读:在这篇文章之前对与目标的跟踪是在一个视频上根据目标的外在特征进行在线学习,这样的方法也取得了较为不错的结果,但是这样的方式具有较多的限制性,推广性不是很好。对此文章借助CNN网络设计了一个新的全卷积Siamese网络,并且可以实现端到端的...

2020-07-05 00:57:17 7 0

原创 《HRank:Filter Pruning using High-Rank Feature Map》论文笔记
原力计划

代码地址: HRank HRankPlus 1. 概述 导读:卷积网络的剪裁对于模型部署到终端机上具有很强的实际意义,但是现有的一些剪裁算法存在训练并不高效,人工设计剪裁方案耗时费力,其原因就是缺少对于网络中非重要成分的指引。这篇文章中在特征图中搜寻具有High Rank(HRank)特性的...

2020-06-27 17:50:04 45 0

原创 《TDNet:Temporally Distributed Networks for Fast Video Semantic Segmentation》论文笔记

代码地址:TDNet 1. 概述 导读:这篇文章提出了一个基于时序分布网络的视频语义分割算法TDNet(Temporally Distributed Network),它的设计思想来自于这么一个观察:较深的网络输出的特征是可以由一系列的浅层网络输出的特征进行组合得到。而在视频分割任务中视频是具有...

2020-06-25 16:26:56 56 0

原创 《A Transductive Approach for Video Object Segmentation》论文笔记

参考代码:transductive-vos.pytorch 1. 概述 导读:现有的很多视频分割算法是依赖在外部训练好的额外模块实现的,如光流网络与实例分割,这就导致了这些方法在传统基准上无法与其它方法媲美。为此文章提出了一个简单且强大的传导方法来解决这个问题,这个方法不需要额外的子计网络模块,...

2020-06-21 11:58:54 76 0

原创 《CBAM: Convolutional Block Attention Module》论文笔记

参考代码:CBAM.PyTorch 1. 概述 导读:这篇文章通过在卷积网络中加入Attention模块,使得网络的表达能力得到提升,进而提升网络的整体性能。文章的Attention模块是在卷积特征的channel于spatial两个维度上先后做Attention操作,之后得到增强之后的特征。并...

2020-06-17 23:31:00 59 0

原创 《NetAdapt:Platform-Aware Neural Network Adaptation for Mobile Applications》论文笔记

代码地址:netadapt 1. 概述 导读:这篇文章提出了一个新的网络压缩算法NetAdapt,它使用一个预训练好的模型在固定计算资源的手机平台上进行压缩试验,因而可以直接采集压缩之后的直接性能表现(计算耗时与功耗)作为feedback,文章指出其为direct metrics。像连乘累加操作...

2020-06-17 23:18:43 54 0

原创 《DANet:Dual Attention Network for Scene Segmentation》论文笔记

代码地址:DANet/ 1. 概述 导读:这篇文章通过self-attention机制去捕获更加丰富的上下文信息,并不同于之前的一些工作是在多个尺度(ASPP,Unet形式的网路等)上去获取上下文信息,这篇文章使用channel-wise和spatial-wise两种方式的attention机制...

2020-06-13 21:31:13 38 0

原创 《Structured Knowledge Distillation for Dense Prediction》论文笔记

代码地址:structure_knowledge_distillation 1. 概述 导读:这篇文章针对的是密集预测的网络场景(如语义分割),在之前的一些工作中对于这一类网络的蒸馏时照搬分类任务中那种逐像素点的蒸馏方式(相当于是对每个像素的信息分别进行蒸馏),文章指出这样的产生的结果并不是最优...

2020-06-13 10:53:07 85 0

原创 《Arbitrary Shape Scene Text Detection with Adaptive Text Region Representation》论文笔记

参考代码:暂无 1. 概述 导读:这篇文章为任意形状的自然场景下文本检测提供了一个新的算法,这个算法中使用了自适应形状的文本区域表达(使用RNN网络)。文章的网络首先给定一张待检测的图片,网络通过text RPN网络提取出可能的文本区域,之后这些区域通过优化网络进行修正与优化。在优化网络中采用了...

2020-06-11 23:58:44 65 0

原创 《Fast Video Object Segmentation by Reference-Guided Mask Propagation》论文笔记

参考代码:暂无 1. 概述 导读:这篇文章在Siamese编解码网络结构的基础上,将视频分割网络中的mask传导与目标检测思想(数据增广的时候)相结合,克服彼此存在的问题,从而构建除了一个新的视频分割的网络,并且其速度还挺快,能跑到大概10FPS(ResNet-50的backbone,并不需要任...

2020-06-06 22:02:26 53 0

原创 《Context Prior for Scene Segmentation》论文笔记

代码地址(暂未开源):ContextPrior 1. 概述 导读:现有分割算法中会去充分获取并利用输入数据的上下文信息,但是这些方法并没有有效区分这些上下文信息来自的类别(缺少监督),文章指出这样会给网络理解需要分割的图像造成困扰(带来错误分类的情况),因而在这篇文章中直接去监督特征融合,使得可...

2020-06-06 17:43:04 72 0

原创 《Pruning from Scratch》论文笔记

1. 导读 导读:这篇文章从不同于原始网络剪裁的角度出发,分析了预训练给网络剪裁带来的影响,之后分析是否在网络剪裁的时候需要进行预训练,从而提出了一种不需要预训练进行的网络剪裁方式,其是通过随机初始化的方式去获取剪裁的网络结构,在这个结构上也获得了与在预训练模型上性能接近的结果,好处就是省去了花...

2020-05-31 23:47:38 69 0

原创 《Strip Pooling:Rethinking Spatial Pooling for Scene Parsing》论文笔记

代码地址:SPNet 1. 概述 导读:池化操作是在逐像素预测任务中获取较大感受野范围较为高效的做法,传统一般采取N∗NN*NN∗N的正规矩形区域进行池化,在这篇文章中引入了一种新的池化策略,就是使用长条形的池化kernel来实现池化,即是池化的核心被重新设计为N∗1,1∗NN*1,1*NN∗1...

2020-05-30 23:54:10 98 0

原创 《GhostNet:More Features from Cheap Operations》论文笔记

参考代码:ghostnet 1. 概述 导读:卷积网络由于其在运行时内存与计算资源的限制较难部署到移动设备上,这篇文章是在卷积网络中存在较多冗余的特征图发现基础上,进行研究并提出了一Ghost module使用代价更小的方式去生成更多的特征图。这个模块通过一系列的低代价线性变换去虚构一些特征图,...

2020-05-25 00:20:58 63 0

原创 《YOLOv4:Optimal Speed and Accuracy of Object Detection》论文笔记

参考代码:darknet 1. 概述 导读:检测网络发展到现如今已经有很多的改进思路,这些改进思路在狭义或是广义程度上都对检测网络的性能有所提升。在这篇文章中对这些改进的思路进行探究,从理论上分析对检测结果的影响。文章发现一些检测优化的技巧是针对某个数据集,某个问题等较为单一的方面进行设计与优化...

2020-05-23 12:24:26 112 0

原创 《Gaussian YOLOv3》论文笔记

参考代码:Gaussian_YOLOv3 关键代码解释:Gaussian YOLOv3:一个更强的YOLOv3,现已开源! 1. 概述 导读:这篇文章着力于解决自动驾驶检测任务最后结果中的假阳性检测结果问题,文章在YOLOv3网络的坐标回归上引入一组高斯参用于表示坐标的不确定性(目标置信度与分类...

2020-05-17 21:09:59 94 0

原创 多边形标注收缩python代码实现

1. 概述 在做文本检测相关工作的时候会使用到分割网络对文本进行检测,直接使用原始的标注进行训练会导致上下文本存在粘连,一个较为有效的办法就是对标注进行收缩,这样粘连的情况会有所好转。这里将图片放置在src_imgs文件夹下(文件格式为jpg文件),对应的标注放置在labels_txt文件夹下(文...

2020-04-19 16:36:07 248 0

原创 《Fast User-Guided Video Object Segmentation by Interaction-and-Propagation Networks》论文笔记
原力计划

参考代码:暂无 1. 概述

2020-04-18 11:01:34 104 0

原创 《Robust Multiple Object Mask Propagation with Efficient Object Tracking》论文笔记
原力计划

参考代码:暂无 1. 概述 导读:交互的视频目标分割拥有两个比较核心的操作:交互式的图像目标分割(将用户给的交互信息【方框、点击等,与文中tracker对应】与RGB图像、前一帧分割结果【可选】送入CNN模型)与视频目标mask的传导(与DeepLab v3+分割网络对应)。这篇文章将这两个步骤...

2020-04-14 22:19:43 81 0

原创 TensorFlow下数据加载——tf.data的使用

1. 概述 在Pytorch中数据加载是通过torch.utils.data.dataset与torch.utils.data.dataloader完成的,而在TensorFlow中现在主推的是使用tf.data实现数据加载。此前,在TensorFlow中读取数据一般有两种方法: 1)使用pla...

2020-04-14 13:39:54 197 0

原创 《Lucid Data Dreaming for Video Object Segmentation》论文笔记

参考代码:LucidDataDreaming 1. 概述 导读:文章针对在运动场景下需要高质量表现模型(VOS)的训练过程进行了探究,一般来讲训练这些模型到较高的性能,需要较多样的数据,这就需要较多的数据量,而这篇文章中比较有意思的点是提出了一种数据合成方法lucid data dreaming...

2020-04-07 00:01:20 229 0

原创 《RVOS:End-to-End Recurrent Network for Video Object Segmentation》论文笔记

参考代码:RVOS 1. 概述 导读:这篇文章提出一个可以实现多目标视频分割的方法RVOS(Recurrent network for multiple object Video Object Segmentation),这篇文章主要有两点比较有意思的点:1)可以实现没有第一帧标注与finetu...

2020-04-05 12:49:54 208 0

原创 《SiamMask:Fast Online Object Tracking and Segmentation:A Unifying Approach》论文笔记

参考代码:SiamMask 1. 概述 导读:这篇文章在基于孪生网络的目标跟踪算法离线训练的过程中嵌入一个mask分割分支,从而可到一个既可以做VOT也可以做VOS(分割性能这块可以还有很大空间)的网络结构SiamMask(含3和2输出的两个变种)。训练完成之后只需要给定初始的边界框初始化就可以...

2020-03-31 11:50:19 72 0

原创 《FEELVOS:Fast End-to-End Embedding Learning for Video Object Segmentation》论文笔记

参考代码:feelvos 1. 概述 导读:现有一些经典的视频分割算法都是比较复杂的,很依赖于在第一帧上进行finetune,并且运算的速度也是很慢的,这就严重限制了其实际使用。针对这些问题文章提出了一种并不依赖于finetune的简单快速方法FEELVOS,这个方法中首先利用利用特征图上逐像素...

2020-03-28 19:13:52 143 0

原创 《MaskTrack:Learning Video Object Segmentation from Static Images》论文笔记

参考代码:MaskTrack 1. 概述 导读:这篇文章借鉴了实例分割与目标跟踪的思想,从而得到视频分割方法MaskTrack。文章的方法使用静态图像(非标注的视频序列)就可以完成训练工作,并且输入的信息可以为边界框、分割图或是合并多个带注释的帧,输入的范围很宽泛,这就使其可以运用到不同的场合下...

2020-03-22 16:16:21 269 0

原创 《OSVOS:One-Shot Video Object Segmentation》论文笔记

代码地址:OSVOS-PyTorch 1. 概述 导读:这篇文章是视频分割领域的一篇比较经典的文章,该文章的方法是一种半监督离线化训练的方法,从前景分割分支与轮廓检测分支的结果上获取分割的结果。这篇文章的方法是逐帧进行分割的,因而帧与帧之前相互关系这里并没有运用。总的来说其实现的效果在那个时候还...

2020-03-21 23:58:32 151 0

原创 《PointRend:Image Segmentation as Rendering》论文笔记

代码地址:PointRend-PyTorch 1. 概述 导读:这篇文章致力于解决语义分割中比较棘手的一个比较棘手的问题,那就是对于细节边界的回归上,这边文章采用了一种采样加单独回归的思路去完成这些困难分割部分的回归,也取得了较为不错的效果。这篇文章对此提出的模块叫做PointRend模块,主要...

2020-03-09 23:16:35 112 0

原创 TensorFlow中卷积参数剪枝的实现基础探究

1. 背景 这里的任务是要在TF框架下运用现在已经较为成熟的剪枝算法,由于TF中对于可训练参数的管理与Pytorch、Caffe并不相同,这篇文章对其TF实现卷积参数剪枝进行了探究。 2. TF中可训练参数的存储 TF中是将网络构建为一个计算图,在一个计算图中可以通过集合(collection)来...

2020-02-24 13:34:22 102 0

原创 《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》论文笔记

代码地址:DIoU 1. 概述 导读:这篇文章主要的贡献在边界框损失函数的优化上面,传统上使用LnL_nLn​范数的损失,如smooth-L1或是其对应的改进balanced-L1,但是这些损失函数并不直接与检测框的质量相关。将检测框的质量作为回归的度量就引入IoU损失函数,为了弥补IoU损失函...

2020-01-19 00:09:49 382 0

原创 《EfficientDet:Scalable and Efficient Object Detection》论文笔记

代码地址:EfficientDet.Pytorch 1. 概述 导读:这篇文章的总体思想上借鉴了EfficientNet的设计思路:使用缩放的思想按照需求的网络性能缩放网络大小,在性能与网络大小上获取权衡,可以看作是EfficientNet在检测领域的延伸。针对与检测领域这篇文章提出了两个改进的...

2020-01-12 18:14:43 309 0

原创 《FSAF:Feature Selective Anchor-Free Module for Single-Shot Object Detection》论文笔记

参考代码地址:Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection 1. 概述 导读:这篇文章对于一阶段(文中baseline为RetinaNet)的检测模型回归提供了一个新的特征选择机制:anchor-fre...

2020-01-11 17:13:59 289 0

原创 《YOLACT++ Better Real-time Instance Segmentation》论文笔记

代码地址:yolact 1. 概述 导读:这篇文章的方法YOLACT++是在YOLACT的基础上进行改进得到的(之前关于YOLACT的文章可以参考之前的博文:链接),这篇文章给出的算法相比之前的版本其在instance分割性能上有了很大进步,作为取舍的另外一方面,在速度上略微有所下降。其具体的改...

2020-01-05 15:18:41 620 0

原创 《Libra R-CNN: Towards Balanced Learning for Object Detection》论文笔记

1. 概述 导读:这篇文章是对于检测网络训练过程中存在的问题进行了分析,分析明确指出检测网络在训练过程中会存在明显的不平衡问题,这里的不平衡问题大体分为3个层次:检测框采样机制层次、特征图层次、目标函数层次。对此,文章对于这些不同层次的不平衡问题进行了研究,并对每个层次的问题提出了对应的解决办法...

2020-01-01 23:22:34 494 0

原创 《Distilling Object Detectors with Fine-grained Feature Imitation》论文笔记

代码地址:Distilling-Object-Detectors 1. 概述 导读:这篇文章是在two stage检测网络Faster RCNN基础上使用知识蒸馏改进亲轻量级网络性能。其中的核心思想是teacher网络中需要传递给student网络的应该是有效的信息,而非无效的背景区域信息,因而...

2019-12-28 22:49:30 151 0

原创 《Object detection at 200 Frames Per Second》论文笔记

1. 概述 导读:这篇文章是在检测模型上使用知识蒸馏,从而实现在减小检测模型尺寸与推理时间的同时,尽可能提升小模型的检测性能。这篇文章是基于Tiny-YOLO的检测模型,但是在知识蒸馏的部分做了较多的工作,归纳为:(1)objectness scaled distillation:按照目标是否为...

2019-12-28 21:29:33 74 0

原创 《Distilling the Knowledge in a Neural Network》论文笔记

1. 概述 这篇文章是比较早的文章,但是很多后序的工作都是源自于此,文章中提出了使用soft target(文章中说的是softmax层的输出)来实现大的模型到小的模型之间的知识迁移,从而提升小模型的性能。对于这里使用soft target而非hard target(如分类的类别目标),其原因是软...

2019-12-21 13:59:31 57 0

原创 网络模型int8量化中使用的一些量化方法

1. 概述 前言:这篇博客中涉及到的是网络在做int8 infer时候涉及到的量化方法,这里并不涉及到int8训练的东西,这篇文章涉及到的量化方法主要来自于:Quantizing deep convolutional networks for efficient inference: A whi...

2019-12-21 00:28:07 1035 0

原创 《Learning Efficient Convolutional Networks through Network Slimming》论文笔记

代码地址:slimming 1. 概述 导读:这篇文章是一篇关于CNN网络剪枝的文章,文章里面提出通过BatchNorm层的scaling参数确定重要的channel,排除不重要的channel,从而达到网络瘦身的目的。此外文章还引入了L1范数,通过L1范数约束的稀疏特性使得BN的scaling...

2019-12-21 00:07:17 176 0

提示
确定要删除当前文章?
取消 删除