m_buddy的博客

背黑锅我来,送死你去,拼全力为众生,牺牲也值得

Caffe源码,训练流程分析

1. 前言 1.1 Caffe结构简单梳理 在之前的文章(Caffe源码整体结构及介绍)中介绍了Caffe中的一些重要的组件: 1)Blob 主要用来表示网络中的数据,包括训练数据,网络各层自身的参数(包括权值、偏置以及它们的梯度),网络之间传递的数据都是通过 Blob 来实现的,同时 Blob ...

2019-04-14 22:40:26

阅读数 185

评论数 0

XGBoost参数解释

前言 本文中针对XGBoost的参数说明进行部分翻译得来,原文链接。因而本文中只对一些关键参数进行了翻译,且由于本人能力有限,文中难免存在错误的地方,还望指正。以下是大致翻译内容。 在运行XGboost之前, 我们必须设置三种类型的参数: 通用参数(general parameters),Bo...

2018-02-19 20:07:34

阅读数 5010

评论数 0

《An Analysis of Scale Invariance in Object Detection – SNIP》论文笔记

1. 概述 导读:这篇文章要讨论的是检测模型中对于小目标的检测问题,小目标在检测任务中是公认的难题。这篇文章首先分析了什么原因限制了检测模型对小目标的检测性能,对于小目标普遍采用的是增加输入图像尺寸的方式,以增加对于小目标的检测能力。对此文章中对涉及到的变量进行相关的实验,来寻找增加小目标检测的...

2019-05-22 23:56:00

阅读数 8

评论数 0

《Single-Shot Object Detection with Enriched Semantics》论文笔记

1. 概述 导读:这篇文章提出了新的一阶段检测算法Detection with Enriched Semantics(EDS),该算法在检测网络中通过semantic Segmentation branch以及global activation module增强了目标检测的语义特征,采用的是at...

2019-05-22 00:26:26

阅读数 8

评论数 0

Pascal VOC数据格式转COCO数据格式脚本(Object Detection)

1. 前言 1.1 COCO数据集 COCO的全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。COCO通过在Flickr上搜索80个对象类别和各种场景类型来收集图像,其使用了亚马逊的Me...

2019-05-19 22:52:45

阅读数 15

评论数 0

《Deformable ConvNets v2: More Deformable, Better Results》论文笔记

代码地址:DCNv2 1. 概述 导读:可变形卷积(Deformable Convolution)的特性使得其拥有适应目标几何形状的能力。在可变形卷积v1版本中,引入了Deformable conv和Deformable RoIPooling,它们对卷积和RoIPooling的分布入来offse...

2019-05-18 22:40:02

阅读数 9

评论数 0

《R-FCN-3000 at 30fps:Decoupling Detection and Classification》论文笔记

1. 概述 导读:这篇文章提出的模型叫做R-FCN-3000(3000类目标)是一个目标定位与目标分类相互独立的实时大规模(分类数多)检测器,其含义是将目标定位与分类解耦,分别预测目标置信度(含检测框)与分类概率,最后将两个结果组合得到检测结果。该算法是在R-FCN的基础上进行修改得到的,但是原...

2019-05-13 23:43:37

阅读数 15

评论数 0

《R2CNN:Rotational Region CNN for Orientation Robust Scene Text Detection》论文笔记

代码地址: R2CNN 1. 概述 这篇文章提出了R2CNN模型用于去检测自然场景下任意角度旋转的文本,该模型是基于Faster R-CNN结构的。该方法首先使用RPN网络在文本区域的坐标轴方向上产生不同的默认检测框,之后对每个方向的默认检测框的特征使用不同的池化尺寸进行池化融合,最后网络使用融...

2019-05-12 18:34:26

阅读数 10

评论数 0

《PANet:Path Aggregation Network for Instance Segmentation》论文笔记

1. 概述

2019-05-11 16:38:31

阅读数 18

评论数 0

《CenterNet: Keypoint Triplets for Object Detection》论文笔记

代码地址:CenterNet 1. 概述 导读:这篇博客中讲到的CenterNet是由中科院、牛津大学以及华为诺亚方舟实验室联合提出的One-stag目标检测论文,该算法是在之前工作CornerNet(笔记链接:链接)的基础上进行改进得来的。主要改进的地方是使用三个“点”确定一个检测框减少误检提...

2019-05-11 11:18:25

阅读数 24

评论数 0

RefineDet:(3)C++测试代码

代码地址:RefineDet 相关链接: 《RefineDet:Single-Shot Refinement Neural Network for Object Detection》论文笔记 RefineDet:(1)训练脚本解析 RefineDet:(2)检测部分网络解析 1. 概述 Pyt...

2019-05-08 23:58:30

阅读数 23

评论数 0

RefineDet:(1)训练脚本解析

1. 概述 RefineDet的相关原理介绍已经在之前的博客中做了介绍: 这里主要就所用到的训练脚本中做一些分析,这里选用的网络是VGG16 # Add extra layers on top of a "base" network (e.g. VGGNet or ResNet...

2019-05-08 23:44:40

阅读数 19

评论数 0

RefineDet:(2)检测部分网络解析

相关链接: 《RefineDet:Single-Shot Refinement Neural Network for Object Detection》论文笔记 RefineDet:(1)训练脚本解析 这部分讲解的是从TCB模块构建之后创建ARM与ODM模块的代码。这里涉及到的RefineDe...

2019-05-08 23:42:28

阅读数 17

评论数 0

《RefineDet:Single-Shot Refinement Neural Network for Object Detection》论文笔记

代码地址:RefineDet 1. 概述 在现有的检测方法中两阶段的Faster R-CNN具有较高的检测精度,一阶段的SSD具有较高的效率,这篇文章提出的方法RefineDet具有更高的检测精度并保持了与一阶段检测方法相近的检测效率。RefineDet由两个模块组成:anchor优化模块(Anc...

2019-05-08 00:24:30

阅读数 27

评论数 0

《RON: Reverse Connection with Objectness Prior Networks for Object Detection》论文笔记

1. 概述 本篇文章提出了RON网络,该网络是受Faster RCNN与SSD的启发。在全卷积网络下实现RON: 1)对于多尺度目标检测这里使用反向连接的方式,使得网络可以在多个尺度上进行检测; 2)文章使用目标先验去减小搜索的空间(反传时),最后,通过多任务 Loss 让整个网络实现 end-...

2019-04-30 00:03:15

阅读数 17

评论数 0

Caffe常用python接口记录

1. python接口训练 caffe python下网络的训练 import caffe caffe.set_device(int(0)) caffe.set_mode_gpu() # GPU caffe.set_mode_cpu() # CPU solver = caffe.SGDSo...

2019-04-29 00:48:14

阅读数 14

评论数 0

VOC数据集到RRPN所需数据格式转换脚本

1. 前言 在之前的文章中已经介绍了过了RRPN的原理,在给出的代码里面也写了相关数据转换的脚本,其实只需要理解了其内部所需数据的类型就可以按照自己的意愿将现有的数据集转换过去,而且该算法可以做到多类别检测,只是需要很小的修改就可以实现。 2. 转换脚本 def get_PascalVOC_200...

2019-04-27 17:07:37

阅读数 77

评论数 0

《GIoU: A Metric and A Loss for Bounding Box Regression》论文笔记

1. 概述 1.1 背景 IoU通常作为检测性能的度量指标,其具有尺度不变性,但是最大化检测框的IoU与优化检测框的回归loss并不是对等的,比如在Faster RCNN中IoU用作proposal区域的选择度量,选择之后在通过全连接回归得到最后的检测结果,因而就造成了检测框边界回归与IoU的“不...

2019-04-27 16:58:30

阅读数 87

评论数 0

Caffe源码,caffe::Solver<Dtype>::Snapshot运行分析

1. 概述 在进行网络训练的时候会保存网络权值信息到文件中,用来后序部署等。在Caffe中实现这个功能是使用Snapshot()函数实现的,在Caffe中权值文件的保存形式有2中,它们是BinaryProto格式文件和hdf5格式文件,一般未指明的情况下,缺省为BinaryProto格式的形式。本...

2019-04-21 21:54:11

阅读数 19

评论数 0

《TextBoxes++: A Single-Shot Oriented Scene Text Detector》论文笔记

1. 概述 这篇文章给出的方法是为了解决旋转文本检测的问题,因而文章的方法TextBoxes++是能够检测倾斜文本的,该方法检测文本是通过带角度的矩形框或是四边形框来表示的。由于该方法是源自于SSD的,因而这个网络是直通的,并不是类似Faster R-CNN的谅解网络,自然速度就很快了,作者在分辨...

2019-04-20 23:41:52

阅读数 37

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭