YOLO-v3模型参数anchor设置

本文介绍了YOLO-v3模型中Anchor参数的重要性,解释了Anchor的本质,即SPP思想的逆向,并详细说明了如何根据训练数据计算自定义的Anchor。通过KMeans算法确定Anchor盒子,虽然结果可能因初始点选择而异,但不影响网络最终适应。此外,对比了YOLOv2和YOLOv3中Anchor大小的设定差异。
摘要由CSDN通过智能技术生成

1. 背景知识

在YOLO-v2版本中就引入了anchor box的概念,极大增加了目标检测的性能。但是在训练自己数据的时候还是用模型中原有的anchor设置显然是有点不合适的,那么就涉及到根据自己的训练数据来设置anchor。

那么,首先我们需要知道anchor的本质是什么,本质是SPP(spatial pyramid pooling)思想的逆向。而SPP本身是做什么的呢,就是将不同尺寸的输入resize成为相同尺寸的输出。所以SPP的逆向就是,将相同尺寸的输出,倒推得到不同尺寸的输入。

接下来是anchor的窗口尺寸,这个不难理解,三个面积尺寸( 12 8 2 , 25 6 2 , 51 2 2 128^2,256^2,512^2 128225625122),然后在每个面积尺寸下,取三种不同的长宽比例 ( 1 : 1 , 1 : 2 , 2 : 1 ) (1:1,1:2,2:1) 1:1,

评论 79
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值