Window7-Anaconda-TensorFlow

本文详细介绍了在Windows上配置深度学习环境的过程,包括Anaconda的安装、CUDA与cuDNN的设置,以及TensorFlow的安装。通过Anaconda创建环境并解决因GFW导致的下载问题。提供了TensorFlow CPU和GPU版本的安装步骤,并强调了选择正确版本的重要性。文章还提及了TensorFlow环境的使用和项目实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows下深度学习环境配置

特别提醒,linux 基本一致!

本文由笔者整理以及个人的经验总结而来,保留查看的认为有较大查看价值的连接,并且尊重原作者劳动。

关于caffe,CUDA和cuDNN的安装该文有说明:https://www.cnblogs.com/songxingzhu/p/6018435.html

本人不再炒冷饭,只做个人认为的重要部分的一些补充说明。

caffe的安装

  • caffe是一个开源项目,官网http://caffe.berkeleyvision.org/,GitHub:https://github.com/BVLC/caffe/

  • 是一个轻量的处理图像框架–也就是说一套图像处理的流程模型,个人使用需要下载并且编译,github有生成的,而且有人使用证明比自己生成的运行速度更快。

CUDA与cuDNN的安装

TensorFlow的安装

具体的可以参看该文章https://www.cnblogs.com/lvsling/p/8672404.html

该文章较为详细的接受了在windows下对TensorFlow的安装问题!

  • 此时,需要下载anaconda,并且已经安装好了,具体的安装过程不再赘述。

  • 安装TensorFlow的一步:修改连接到的服务器镜像,因为GFW的问题,无法访问到国外的服务器.

# 修改指向的服务器地址:清华镜像服务器.
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

# 中科大的位置.
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

文件位置为:<C:\Users\用户名\.condarc>

  • 在Anaconda Prompt中输入:
# 创建一个conda环境,名称为:TensorFlow,由于对python支持性的问题.

# 不同的python3版本也是不兼容的,至少本人试过python=3.7.1,框架运行时不行的。
 conda create -n tensorflow python=3.6

此时完成之后:只是创建一个conda的环境,还未正式安装TensorFlow!

开始从镜像下载安装TensorFlow.

  • 方式一:

    # cpu版本,比如cp35,指的是c语言写的python解释器,版本3.6,版本要求严格,不得随便修
    # 使用清华镜像,直接定位到文件安装.
    pip install https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/cpu/tensorflow-1.2.1-cp36-cp36m-win_amd64.whl
    
    # 使用中科大镜像,直接定位文件安装,该镜像不稳定,可能不存在.
    https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/cpu/tensorflow-1.2.1-cp36-cp36m-win_amd64.whl
    
    """与上文有些不一样,主要是清华镜像位置的改变,其余一致,其实还有一种方式安装.
    直接下载xxx.whl文件.
    然后使用运行:pip3 install tensorflow_gpu-1.2.1-cp36-cp36m-win_amd64.whl亦可.
    若无法检测到pip3语法,可以先pip升级即可解决.
    """
    
  • 方式二:上述并不是我最喜欢的方式个人最喜欢方式如下:

    pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.5
    # Ubuntu下pip3没有什么问题,只是python3的标识,但是windows使用pip!!!!
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.5
    
  • pip升级命令行如下:

    python -m pip install -U pip
    
  • 特别提醒:若是高版本的不支持,请尽量查看版本对应号,进行安装,比如python最高的只有3.6,所以最新的3.7版本是不可用的----本文底部版本对应问题

  • linux下与windows几乎一致,只不过源文件所在镜像服务器的位置不同,不想记忆请使用方法二!

  • 若3.6版本不可用,请试用3.5版本…

  • 此时已经安装CPU版本已经完成,但是推荐下面一种合理的安装方式.

推荐的安装TensorFlow的方式.

熟悉了上面的步骤,下面可以稍微快一点。

安装CPU版本的方式-Anaconda程序的Anaconda Prompt.
# 创建环境.
conda create -n tensorflow python=3.6

# 输入y继续安装.

# 激活/切换到使用环境.
conda activate tensorflow 

# 升级pip,然后继续安装继续安装
python -m pip install -U pip
pip install tensorflow

# 安装完成,相对之前的不指定具体的文件,相对比较省事.

# 可能需要的安装...
conda install scipy

# 若出现错误,可以更新到最新,但是不建议,除非你肯定你的cdua+cudnn是最新的.
pip install --upgrade tensorflow.

# or带版本号安装,速度慢,建议使用第二行,我推荐1.5版本!新电脑可以最新版...
pip install tensorflow==1.2.0
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.2
安装GPU版本的方式-Anaconda程序的Anaconda Prompt.
# 利用GPU的运算能力可以较快的运算,但是有GPU算力是有要求的,最低3.5,比如GTX 660还是算了吧,GTX 660算力3.0,GTX 750(ti) 5.0,GTX 1080(ti) 6.1

# 安装CUDA+cuDNN...

# 安装TensorFlow-gpu,带版本号.
pip install --ignore-installed --upgrade tensorflow-gpu ==1.2.0

  • 提示:可以安装1.3版本,最好不要。在这里插入图片描述
  • N-游戏卡-GPU算力查看位置:https://developer.nvidia.com/cuda-gpus
  • 比如: 660不行,750神卡,不到3.5不建议用GPU,几乎没区别… …在这里插入图片描述

Tensorflow环境使用

  • 激活切换到使用环境.

    conda activate tensorflow-gpu
    
    • 使用方法:

    比如我有一个项目,在D:\Pycharm\MyFiles\Demo目录下,该目录下有main函数:evaluate.py,当然也可以有其他的主函数如:classtype.py

    # 切换到项目主目录下,可以一步步切换,也可以直接到主目录下,再手动打开cmd.
    
    # 启用TensorFlow环境,其实这只是一个名称,具体取决于当时安装的位置.
    conda activate tensorflow
    
    # 即可运行,有参数可以加在后面.
    python evaluate.py
    
    # 若带参数的运行python文件.
    python evaluate.py 我是参数我是参数
    

    写在最后:安装请查看TensorFlow对应的版本支持性,请滑到网页底部!!!

    https://tensorflow.google.cn/install/source_windows

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值