Win11极速安装Tensorflow-gpu+CUDA+cudnn(含视频)

本文详细指导如何在Anaconda环境下查看和管理GPU版本(CUDA和cudnn),安装TensorFlow-GPU的特定版本,以及处理numpy版本不匹配的问题,包括创建Python虚拟环境和确保兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


不要使用官网版本,直接使用conda版本,有对应的包,安装很方便,

各历史版本的Anaconda:https://repo.anaconda.com/archive/

1. 查看本机GPU的cuda版本

在命令行输入nvidia-smi,显示CUDA 版本为12.3 ,cuda(cudatoolkit)版本低于或等于12.3均可。
在这里插入图片描述
上图红框内容分别为:显存使用/显存大小,右侧为GPU使用率

2. 查看适配gpu、tensorflow-gpu、cuda、cudnn版本

下面这些版本已经测试过,可以匹配使用。CUDA版本只受显卡驱动版本的影响,版本越新支持的CUDA约多,且向下兼容。

Ver
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值